dos Santos Ronaldo Vagner Thomatieli, Caperuto Erico Chagas, de Mello Marco Túlio, Costa Rosa Luis Fernando Bicudo Pereira
Department of Bioscience, Centro de Estudos em Psicobiologia e Exercício, UNIFESP, Baixada Santista, São Paulo, Brazil.
Eur J Appl Physiol. 2009 Oct;107(3):309-15. doi: 10.1007/s00421-009-1130-6. Epub 2009 Jul 17.
This study investigated the effect of exercise on glutamine metabolism in macrophages of trained rats. Rats were divided into three groups: sedentary (SED); moderately trained (MOD) rats that were swim trained 1 h/day, 5 days/week for 6 weeks; and exhaustively trained (EXT) rats that were similarly trained as MOD for 5 weeks and, in the 6th week, trained in three 1-h sessions/day with 150 min of rest between sessions. The animals swam with a load equivalent to 5.5% of their body weight and were killed 1 h after the last exercise session. Cells were collected, and glutamine metabolism in macrophage and function were assayed. Exercise increased phagocytosis in MOD when compared to SED (34.48 +/- 1.79 vs 15.21 +/- 2.91%, P < 0.05); however, H(2)O(2) production was higher in MOD (75.40 +/- 3.48 nmol h x 10(5) cell(-1)) and EXT (79.20 +/- 1.18 nmol h x 10(5) cell(-1)) in relation to SED (32.60 +/- 2.51 nmol h x 10(5) cell(-1), P < 0.05). Glutamine consumption increased in MOD and EXT (26.53 +/- 3.62 and 19.82 +/- 2.62 nmol h x 10(5) cell(-1), respectively) relative to SED (6.72 +/- 0.57 nmol h x 10(5) cell(-1), P < 0.05). Aspartate increased in EXT (9.72 +/- 1.14 nmol h x 10(5) cell(-1)) as compared to SED (1.10 +/- 0.19 nmol h x 10(5) cell(-1), P < 0.05). Glutamine decarboxylation was increased in MOD (12.10 +/- 0.27 nmol h x 10(5) cell(-1)) and EXT (16.40 +/- 2.17 nmol h x 10(5) cell(-1)) relative to SED (1.10 +/- 0.06 nmol h x 10(5) cell(-1), P < 0.05). This study suggests an increase in macrophage function post-exercise, which was supported by enhanced glutamine consumption and metabolism, and highlights the importance for glutamine after exercise.
本研究调查了运动对经过训练的大鼠巨噬细胞中谷氨酰胺代谢的影响。大鼠被分为三组:久坐不动组(SED);适度训练组(MOD),即每天游泳训练1小时,每周训练5天,持续6周;以及过度训练组(EXT),其训练方式与MOD组相似,持续5周,在第6周时,每天进行三次1小时的训练,每次训练之间休息150分钟。动物们携带相当于其体重5.5%的负荷游泳,并在最后一次训练后1小时处死。收集细胞,并检测巨噬细胞中的谷氨酰胺代谢和功能。与SED组相比,运动增加了MOD组的吞噬作用(34.48±1.79%对15.21±2.91%,P<0.05);然而,与SED组(32.60±2.51 nmol h×10⁵细胞⁻¹,P<0.05)相比,MOD组(75.40±3.48 nmol h×10⁵细胞⁻¹)和EXT组(79.20±1.18 nmol h×10⁵细胞⁻¹)的过氧化氢产生量更高。与SED组(6.72±0.57 nmol h×10⁵细胞⁻¹,P<0.05)相比,MOD组和EXT组的谷氨酰胺消耗量增加(分别为26.53±3.62和19.82±2.62 nmol h×10⁵细胞⁻¹)。与SED组(1.10±0.19 nmol h×10⁵细胞⁻¹,P<0.05)相比,EXT组的天冬氨酸增加(9.72±1.14 nmol h×10⁵细胞⁻¹)。与SED组(1.10±0.06 nmol h×10⁵细胞⁻¹,P<0.05)相比,MOD组(12.10±0.27 nmol h×10⁵细胞⁻¹)和EXT组(16.40±2.17 nmol h×10⁵细胞⁻¹)的谷氨酰胺脱羧作用增加。本研究表明运动后巨噬细胞功能增强,这得到了谷氨酰胺消耗和代谢增强的支持,并突出了运动后谷氨酰胺的重要性。