Dublin Steven, Zimenkov Yuri, Conticello Vincent P
Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
Biochem Soc Trans. 2009 Aug;37(Pt 4):653-9. doi: 10.1042/BST0370653.
Complex biological machines arise from self-assembly on the basis of structural features programmed into sequence-specific macromolecules (i.e. polypeptides and polynucleotides) at the molecular level. As a consequence of the near-absolute control of macromolecular architecture that results from such sequence specificity, biological structural platforms may have advantages for the creation of functional supramolecular assemblies in comparison with synthetic polymers. Thus biological structural motifs present an attractive target for the synthesis of artificial nanoscale systems on the basis of relationships between sequence and supramolecular structure that have been established for native biological assemblies. In the present review, we describe an approach to the creation of structurally defined supramolecular assemblies derived from synthetic alpha-helical coiled-coil structural motifs. Two distinct challenges are encountered in this approach to materials design: the ability to recode the canonical sequences of native coiled-coil structural motifs to accommodate the formation of structurally defined supramolecular assemblies (e.g. synthetic helical fibrils) and the development of methods to control supramolecular self-assembly of these peptide-based materials under defined conditions that would be amenable to conventional processing methods. In the present review, we focus on the development of mechanisms based on guest-host recognition to control fibril assembly/disassembly. This strategy utilizes the latent structural specificity encoded within sequence-defined peptides to couple a conformational transition within the coiled-coil motifs to incremental changes in environmental conditions. The example of a selective metal-ion-induced conformational switch will be employed to validate the design principles.
复杂的生物机器是基于分子水平上编入序列特异性大分子(即多肽和多核苷酸)的结构特征进行自我组装而产生的。由于这种序列特异性导致对大分子结构的近乎绝对控制,与合成聚合物相比,生物结构平台在创建功能性超分子组装体方面可能具有优势。因此,基于已为天然生物组装体建立的序列与超分子结构之间的关系,生物结构基序为合成人工纳米级系统提供了一个有吸引力的目标。在本综述中,我们描述了一种从合成α-螺旋卷曲螺旋结构基序创建结构明确的超分子组装体的方法。在这种材料设计方法中遇到了两个不同的挑战:重新编码天然卷曲螺旋结构基序的经典序列以适应结构明确的超分子组装体(如合成螺旋纤维)形成的能力,以及开发在适合传统加工方法的特定条件下控制这些基于肽的材料的超分子自组装的方法。在本综述中,我们专注于基于客体-主体识别来控制纤维组装/拆卸的机制的开发。该策略利用序列定义的肽中编码的潜在结构特异性,将卷曲螺旋基序内的构象转变与环境条件的增量变化耦合起来。将以选择性金属离子诱导的构象开关为例来验证设计原则。