FM Kirby Neurobiology Center and Department of Neurology, Children's Hospital Boston, Boston, MA, USA.
Eur J Neurosci. 2009 Jul;30(2):186-95. doi: 10.1111/j.1460-9568.2009.06809.x. Epub 2009 Jul 9.
Glutamate is the major excitatory neurotransmitter of the central nervous system and is toxic to neurons even at low concentrations. GLT1, the rodent analog of human EAAT2, is primarily responsible for glutamate clearance in the cerebrum. GLT1 was thought to be expressed exclusively in astrocytes in the mature brain. Recently, however, GLT1a was demonstrated in excitatory axon terminals where synaptic glutamate concentration rises above 1 mm during excitatory transmission. GLT1 function in neurons with accurate control of both intracellular and extracellular solutions mimicking synaptic concentration gradients has never been studied. Here we characterized the kinetics of coupled glutamate transporter current in whole-cell configuration and [(3)H]-l-glutamate uptake in cultured rat cerebral neurons across the entire range of synaptic glutamate concentrations. In both neurons and GLT1a-transfected COS-7 cells, the kinetics were similar and revealed two specific components: a high-affinity component with glutamate k(D) value around 15 mum and a low-affinity component with k(D) value around 0.2 mm. The specific low-affinity component was discovered as a result of significant deviation of the transporter current from Michaelis-Menten kinetics in the 100-300 mum concentration range. Activation of the specific low-affinity component led to a two-fold decrease in the current/flux ratio, implying a change in the transport coupling. Our data indicate that GLT1 endogenously expressed in cultured rat forebrain neurons displays high and low glutamate affinity uptake components that are different in current-flux coupling ratios. This property is intrinsic to the protein because it was also observed in GLT1a-transfected COS-7 cells.
谷氨酸是中枢神经系统的主要兴奋性神经递质,即使在低浓度下也对神经元有毒。GLT1 是人类 EAAT2 的啮齿动物类似物,主要负责大脑中谷氨酸的清除。GLT1 被认为仅在成熟大脑中的星形胶质细胞中表达。然而,最近发现 GLT1a 存在于兴奋性轴突末梢,在兴奋性传递过程中,突触谷氨酸浓度升高到 1mM 以上。神经元中 GLT1 的功能以前从未在模拟突触浓度梯度的精确控制细胞内和细胞外溶液的情况下进行过研究。在这里,我们在整个突触谷氨酸浓度范围内,通过全细胞膜片钳配置研究了培养的大鼠大脑神经元中的耦合谷氨酸转运体电流的动力学以及 [(3)H]-l-谷氨酸摄取。在神经元和 GLT1a 转染的 COS-7 细胞中,动力学相似,并揭示了两个特定的成分:一个具有谷氨酸 k(D)值约为 15µM 的高亲和力成分,以及一个具有 k(D)值约为 0.2mM 的低亲和力成分。由于在 100-300µM 浓度范围内转运体电流明显偏离米氏动力学,因此发现了特定的低亲和力成分。特定的低亲和力成分的激活导致电流/通量比降低一倍,表明转运偶联发生变化。我们的数据表明,在培养的大鼠前脑神经元中表达的内源性 GLT1 显示出高和低谷氨酸亲和力摄取成分,它们在电流通量偶联比方面不同。这种特性是蛋白质固有的,因为它也在 GLT1a 转染的 COS-7 细胞中观察到。