Laboratory for Collaborative Diagnostics, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, Ontario, M5S 2S2, Canada.
Malar J. 2009 Jul 17;8:164. doi: 10.1186/1475-2875-8-164.
Deficits in clinical microbiology infrastructure exacerbate global infectious disease burdens. This paper examines how commodity computation, communication, and measurement products combined with open-source analysis and communication applications can be incorporated into laboratory medicine microbiology protocols. Those commodity components are all now sourceable globally. An informatics model is presented for guiding the use of low-cost commodity components and free software in the assembly of clinically useful and usable telemicrobiology workstations.
The model incorporates two general principles: 1) collaborative diagnostics, where free and open communication and networking applications are used to link distributed collaborators for reciprocal assistance in organizing and interpreting digital diagnostic data; and 2) commodity engineering, which leverages globally available consumer electronics and open-source informatics applications, to build generic open systems that measure needed information in ways substantially equivalent to more complex proprietary systems. Routine microscopic examination of Giemsa and fluorescently stained blood smears for diagnosing malaria is used as an example to validate the model.
The model is used as a constraint-based guide for the design, assembly, and testing of a functioning, open, and commoditized telemicroscopy system that supports distributed acquisition, exploration, analysis, interpretation, and reporting of digital microscopy images of stained malarial blood smears while also supporting remote diagnostic tracking, quality assessment and diagnostic process development.
The open telemicroscopy workstation design and use-process described here can address clinical microbiology infrastructure deficits in an economically sound and sustainable manner. It can boost capacity to deal with comprehensive measurement of disease and care outcomes in individuals and groups in a distributed and collaborative fashion. The workstation enables local control over the creation and use of diagnostic data, while allowing for remote collaborative support of diagnostic data interpretation and tracking. It can enable global pooling of malaria disease information and the development of open, participatory, and adaptable laboratory medicine practices. The informatic model highlights how the larger issue of access to generic commoditized measurement, information processing, and communication technology in both high- and low-income countries can enable diagnostic services that are much less expensive, but substantially equivalent to those currently in use in high-income countries.
临床微生物学基础设施的不足加剧了全球传染病负担。本文探讨了如何将商品计算、通信和测量产品与开源分析和通信应用程序结合起来,纳入实验室医学微生物学方案。这些商品组件现在在全球范围内都可以获得。本文提出了一个信息学模型,用于指导在组装具有临床应用价值和可用性的远程微生物工作站时使用低成本商品组件和免费软件。
该模型包含两个基本原则:1)协作诊断,使用免费和开放的通信和网络应用程序将分布式协作人员联系起来,以便在组织和解释数字诊断数据方面相互协助;2)商品工程,利用全球可用的消费电子产品和开源信息学应用程序,构建通用的开放系统,以与更复杂的专有系统基本等效的方式测量所需的信息。使用常规吉姆萨和荧光染色血涂片显微镜检查诊断疟疾的方法作为示例来验证该模型。
该模型用作约束导向指南,用于设计、组装和测试一个功能齐全、开放和商品化的远程显微镜系统,该系统支持分布式采集、探索、分析、解释和报告染色疟疾病血涂片的数字显微镜图像,同时还支持远程诊断跟踪、质量评估和诊断过程开发。
这里描述的开放式远程显微镜工作站设计和使用过程可以以经济合理和可持续的方式解决临床微生物学基础设施不足的问题。它可以提高以分布式和协作方式全面衡量个体和群体疾病和护理结果的能力。该工作站允许对诊断数据的创建和使用进行本地控制,同时允许远程协作支持诊断数据解释和跟踪。它可以使疟疾疾病信息在全球范围内共享,并开发开放、参与式和适应性强的实验室医学实践。该信息模型强调了在高收入和低收入国家获得通用商品化测量、信息处理和通信技术的更大问题如何能够提供更便宜但与高收入国家目前使用的诊断服务基本等效的诊断服务。