College of Mathematics and Information Science, Xinyang Normal University, Xinyang 464000, PR China.
J Theor Biol. 2009 Oct 21;260(4):502-9. doi: 10.1016/j.jtbi.2009.07.007. Epub 2009 Jul 15.
In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodic solution of order one are obtained. Furthermore, we estimate the position of the periodic solution of order one and discuss the existence of periodic solution of order two. The theoretical results and numerical simulations indicate that the chemostat system with impulsive state feedback control either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate.
本文建立了一个带有脉冲状态反馈控制的恒化器的数学模型,以研究生物过程的周期性。通过一般平面脉冲自治系统周期解的存在性准则,得到了模型具有一阶周期解的条件。进一步,我们估计了一阶周期解的位置,并讨论了二阶周期解的存在性。理论结果和数值模拟表明,带有脉冲状态反馈控制的恒化器系统要么趋于稳定状态,要么存在周期解,这取决于反馈状态、稀释率的控制参数以及微生物和基质的初始浓度。