Lausch Ekkehart, Keppler Romy, Hilbert Katja, Cormier-Daire Valerie, Nikkel Sarah, Nishimura Gen, Unger Sheila, Spranger Jürgen, Superti-Furga Andrea, Zabel Bernhard
Centre for Pediatrics and Adolescent Medicine, Freiburg University Hospital, Freiburg, Germany.
Am J Hum Genet. 2009 Aug;85(2):168-78. doi: 10.1016/j.ajhg.2009.06.014. Epub 2009 Jul 16.
The matrix metalloproteinases MMP9 and MMP13 catalyze the degradation of extracellular matrix (ECM) components in the growth plate and at the same time cleave and release biologically active molecules stored in the ECM, such as VEGFA. In mice, ablation of Mmp9, Mmp13, or both Mmp9 and Mmp13 causes severe distortion of the metaphyseal growth plate. We report that mutations in either MMP9 or MMP13 are responsible for the human disease metaphyseal anadysplasia (MAD), a heterogeneous group of disorders for which a milder recessive variant and a more severe dominant variant are known. We found that recessive MAD is caused by homozygous loss of function of either MMP9 or MMP13, whereas dominant MAD is associated with missense mutations in the prodomain of MMP13 that determine autoactivation of MMP13 and intracellular degradation of both MMP13 and MMP9, resulting in a double enzymatic deficiency.
基质金属蛋白酶MMP9和MMP13催化生长板中细胞外基质(ECM)成分的降解,同时切割并释放储存在ECM中的生物活性分子,如血管内皮生长因子A(VEGFA)。在小鼠中,敲除Mmp9、Mmp13或同时敲除Mmp9和Mmp13会导致干骺端生长板严重变形。我们报告称,MMP9或MMP13的突变是人类疾病干骺端发育异常(MAD)的病因,MAD是一组异质性疾病,已知有较温和的隐性变异型和较严重的显性变异型。我们发现,隐性MAD是由MMP9或MMP13的纯合功能丧失引起的,而显性MAD与MMP13前结构域中的错义突变有关,这些突变决定了MMP13的自激活以及MMP13和MMP9的细胞内降解,从而导致双重酶缺乏。