文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鉴定和验证 MMP 家族成员(MMP2、MMP9、MMP12 和 MMP16)作为肾透明细胞癌(KIRC)的治疗靶点和生物标志物。

Identifying and validating MMP family members (MMP2, MMP9, MMP12, and MMP16) as therapeutic targets and biomarkers in kidney renal clear cell carcinoma (KIRC).

机构信息

The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.

Department of Pharmaceutical Engineering, Jiangsu Ocean University, Lianyungang, China.

出版信息

Oncol Res. 2024 Mar 20;32(4):737-752. doi: 10.32604/or.2023.042925. eCollection 2024.


DOI:10.32604/or.2023.042925
PMID:38560573
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10972725/
Abstract

Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC. By performing STRING and Cytohubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP12 (matrix metallopeptidase 12), and MMP16 (matrix metallopeptidase 16) genes were denoted as hub genes having highest degree scores. After analyzing MMP2, MMP9, MMP12, and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines, interestingly, all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls. The notable effect of the up-regulated MMP2, MMP9, MMP12, and MMP16 was also documented on the overall survival (OS) of the KIRC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (MMP2, MMP9, MMP12, and MMP16). In addition to this, hub genes were involved in various diverse oncogenic pathways. The MMP gene family members (MMP2, MMP9, MMP12, and MMP16) may serve as therapeutic targets and prognostic biomarkers in KIRC.

摘要

肾透明细胞癌(KIRC)是一种恶性肿瘤,具有较高的发病率和死亡率。MMP 家族在肿瘤侵袭和转移中起着关键作用。本研究旨在通过综合计算和分子分析方法,揭示 MMP 基因家族作为肾透明细胞癌(KIRC)治疗靶点和诊断生物标志物的机制相关性。本研究使用 STRING、Cytoscape、UALCAN、GEPIA、OncoDB、HPA、cBioPortal、GSEA、TIMER、ENCORI、DrugBank、靶向亚硫酸氢盐测序(bisulfite-seq)、常规 PCR、Sanger 测序和基于 RT-qPCR 的分析,分析 MMP 基因家族成员,以准确确定几个可作为 KIRC 治疗靶点和诊断生物标志物的枢纽基因。通过对 24 个 MMP 基因家族成员进行 STRING 和 Cytohubba 分析,MMP2(基质金属蛋白酶 2)、MMP9(基质金属蛋白酶 9)、MMP12(基质金属蛋白酶 12)和 MMP16(基质金属蛋白酶 16)基因被标记为具有最高度数评分的枢纽基因。通过对各种 TCGA 数据库和 RT-qPCR 技术进行分析,以及对临床样本和 KIRC 细胞系进行分析,有趣的是,所有这些枢纽基因在 KIRC 样本中的 mRNA 和蛋白水平均显著高于对照组。上调的 MMP2、MMP9、MMP12 和 MMP16 对 KIRC 患者的总生存期(OS)也有显著影响。此外,靶向亚硫酸氢盐测序(bisulfite-seq)分析显示,启动子低甲基化模式与枢纽基因(MMP2、MMP9、MMP12 和 MMP16)的上调有关。除此之外,枢纽基因还参与了各种不同的致癌途径。MMP 基因家族成员(MMP2、MMP9、MMP12 和 MMP16)可作为 KIRC 的治疗靶点和预后生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/8978d380e450/OncolRes-32-42925-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/155c89999525/OncolRes-32-42925-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/012b37ee2745/OncolRes-32-42925-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/5632a2bc6fe2/OncolRes-32-42925-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/19c3f299f4ec/OncolRes-32-42925-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/0a457bde28e4/OncolRes-32-42925-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/4ada455556f0/OncolRes-32-42925-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/d1e6cc3a2e98/OncolRes-32-42925-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/b388e3a84f9d/OncolRes-32-42925-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/b79732820be2/OncolRes-32-42925-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/8898f060fa8f/OncolRes-32-42925-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/8978d380e450/OncolRes-32-42925-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/155c89999525/OncolRes-32-42925-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/012b37ee2745/OncolRes-32-42925-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/5632a2bc6fe2/OncolRes-32-42925-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/19c3f299f4ec/OncolRes-32-42925-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/0a457bde28e4/OncolRes-32-42925-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/4ada455556f0/OncolRes-32-42925-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/d1e6cc3a2e98/OncolRes-32-42925-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/b388e3a84f9d/OncolRes-32-42925-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/b79732820be2/OncolRes-32-42925-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/8898f060fa8f/OncolRes-32-42925-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/10972725/8978d380e450/OncolRes-32-42925-f011.jpg

相似文献

[1]
Identifying and validating MMP family members (MMP2, MMP9, MMP12, and MMP16) as therapeutic targets and biomarkers in kidney renal clear cell carcinoma (KIRC).

Oncol Res. 2024

[2]
Characterization and verification of MMP family members as potential biomarkers in kidney clear cell renal carcinoma.

Am J Cancer Res. 2023-9-15

[3]
The discovery of promising candidate biomarkers in kidney renal clear cell carcinoma: evidence from the in-depth analysis of high-throughput data.

Am J Cancer Res. 2023-9-15

[4]
Deciphering key genes involved in cisplatin resistance in kidney renal clear cell carcinoma through a combined and approach.

Oncol Res. 2023

[5]
Identification of the MMP family as therapeutic targets and prognostic biomarkers in the microenvironment of head and neck squamous cell carcinoma.

J Transl Med. 2023-3-20

[6]
Low expression of SLC34A1 is associated with poor prognosis in clear cell renal cell carcinoma.

BMC Urol. 2023-3-28

[7]
LPAR2 correlated with different prognosis and immune cell infiltration in head and neck squamous cell carcinoma and kidney renal clear cell carcinoma.

Hereditas. 2022-3-4

[8]
Comprehensive analysis on the expression levels and prognostic values of LOX family genes in kidney renal clear cell carcinoma.

Cancer Med. 2020-11

[9]
LINC00997, a novel long noncoding RNA, contributes to metastasis via regulation of S100A11 in kidney renal clear cell carcinoma.

Int J Biochem Cell Biol. 2019-8-20

[10]
Systematic analysis of alternative splicing signature unveils prognostic predictor for kidney renal clear cell carcinoma.

J Cell Physiol. 2019-5-29

引用本文的文献

[1]
Exploring the prognostic role and expression patterns of FAM3A family genes in kidney renal clear cell carcinoma.

Sci Rep. 2025-7-1

[2]
Proteomics and lipidomics of human umbilical cord mesenchymal stem cells exposed to ionizing radiation.

Eur J Med Res. 2025-4-28

[3]
Anticancer effects of salvianolic acid A through multiple signaling pathways (Review).

Mol Med Rep. 2025-7

[4]
TRIM36 serves as a prognostic indicator linked to immune infiltration in KIRC.

Heliyon. 2025-2-7

[5]
Insights into the Gene Expression Profile of Classical Hodgkin Lymphoma: A Study towards Discovery of Novel Therapeutic Targets.

Molecules. 2024-7-25

本文引用的文献

[1]
Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma.

Genomics Inform. 2023-6

[2]
Mechanisms driving the immunoregulatory function of cancer cells.

Nat Rev Cancer. 2023-4

[3]
Epidemiology of Renal Cell Carcinoma: 2022 Update.

Eur Urol. 2022-11

[4]
A LASSO-based survival prediction model for patients with synchronous colorectal carcinomas based on SEER.

Transl Cancer Res. 2022-8

[5]
The 2022 revision of the World Health Organization classification of tumors of the urinary system and male genital organs: advances and challenges.

Hum Pathol. 2023-6

[6]
Renal cell carcinoma: an overview of the epidemiology, diagnosis, and treatment.

G Ital Nefrol. 2022-6-20

[7]
Long Non-Coding RNA-TMPO-AS1 as ceRNA Binding to let-7c-5p Upregulates STRIP2 Expression and Predicts Poor Prognosis in Lung Adenocarcinoma.

Front Oncol. 2022-6-14

[8]
Neoantigen-specific CD4 T cells in human melanoma have diverse differentiation states and correlate with CD8 T cell, macrophage, and B cell function.

Cancer Cell. 2022-4-11

[9]
A pan-cancer analysis of GINS complex subunit 4 to identify its potential role as a biomarker in multiple human cancers.

Am J Cancer Res. 2022-3-15

[10]
Early detection of cancer.

Science. 2022-3-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索