Lv Yonggang, Cheung Nai-Kong V, Fu Bingmei M
Department of Biomedical Engineering, The City College of New York, New York, New York 10031, USA.
J Nucl Med. 2009 Aug;50(8):1324-31. doi: 10.2967/jnumed.108.060798. Epub 2009 Jul 17.
Radioimmunotherapy can effectively treat leptomeningeal metastases when radiolabeled antibodies are administered into the cerebrospinal fluid (CSF). We developed a pharmacokinetic model to evaluate the role of kinetic and transport parameters of radioimmunotherapy in maximizing the therapeutic ratio, the ratio of the area under the curve for the concentration of the bound antibodies versus time (AUC[C(IAR)]), to that for unbound antibodies (AUC[C(IA)]).
We simplified the CSF space as a single compartment and considered the binding of antibodies to antigens on tumor cells lining the surface of the CSF space. Mass conservation was applied to set up the equations for C(IAR), C(IA), and other pharmacokinetic variables. A Runge-Kutta method was used to solve the equations.
This model agreed with the measured data in 10 of 14 patients in the phase I trial of intra-Ommaya radioimmunotherapy using (131)I-3F8. Using this model, we predicted that increasing the affinity of antibodies to antigens greatly increases AUC(C(IAR)) but not AUC(C(IA)); for the same amount of isotope administered, the smaller antibody dose and the higher specific activity improves therapeutic ratio. When the isotope half-life (t(1/2-I)) was 0.77 h, increasing the antibody association constant enhanced AUC(C(IAR)) much more than did decreasing the dissociation constant, even if overall affinity was unchanged. When t(1/2-I) reached 240 h, decreasing the dissociation constant would slightly enhance AUC(C(IAR)). Other predictions were that decreasing the CSF bulk flow rate would increase AUC(C(IAR)), with 3 mL/h being optimal; at the same amount of antibody administered by continuous infusion and by split administrations, compared with that by the single bolus administration, one could improve AUC(C(IAR)) by up to 1.8- and 1.7-fold, respectively; and for an antibody affinity of 10(-8) M, increasing t(1/2-I) from 0.77 up to 64 h could greatly enhance the therapeutic ratio.
The strong agreement between model predictions and patient data supports the validity of the assumptions and simplifications in our model. The predictions using this model are not intuitive and need to be validated in future clinical trials. The improved therapeutic ratio by optimized kinetic and transport parameters may enhance the clinical efficacy of this new treatment modality.
当将放射性标记抗体注入脑脊液(CSF)时,放射免疫疗法可有效治疗软脑膜转移瘤。我们建立了一个药代动力学模型,以评估放射免疫疗法的动力学和转运参数在最大化治疗比(即结合抗体浓度随时间变化曲线下面积[AUC[C(IAR)]]与未结合抗体的该面积[AUC[C(IA)]]之比)方面的作用。
我们将脑脊液空间简化为一个单室,并考虑抗体与脑脊液空间表面衬里肿瘤细胞上抗原的结合。应用质量守恒来建立C(IAR)、C(IA)和其他药代动力学变量的方程。使用龙格 - 库塔方法求解这些方程。
在使用(131)I - 3F8进行奥马亚囊内放射免疫疗法的I期试验中,该模型与14例患者中的10例测量数据相符。使用该模型,我们预测增加抗体与抗原的亲和力会大大增加AUC(C(IAR)),但不会增加AUC(C(IA));对于相同剂量的同位素,较小的抗体剂量和较高的比活度可提高治疗比。当同位素半衰期(t(1/2 - I))为0.77小时时,增加抗体结合常数对AUC(C(IAR))的增强作用远大于降低解离常数,即使总体亲和力不变。当t(½ - I)达到240小时时,降低解离常数会略微增强AUC(C(IAR))。其他预测结果为,降低脑脊液总体流速会增加AUC(C(IAR)),3 mL/h为最佳流速;在通过连续输注和分次给药给予相同量抗体的情况下,与单次推注给药相比,分别可将AUC(C(IAR))提高1.8倍和1.7倍;对于抗体亲和力为10(-8) M的情况,将t(1/2 - I)从0.77小时增加到64小时可大大提高治疗比。
模型预测与患者数据之间的高度一致性支持了我们模型中假设和简化的有效性。使用该模型的预测并不直观,需要在未来的临床试验中进行验证。通过优化动力学和转运参数提高治疗比可能会增强这种新治疗方式的临床疗效。