Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA. [corrected]
Eur J Nucl Med Mol Imaging. 2011 Feb;38(2):334-42. doi: 10.1007/s00259-010-1633-8. Epub 2010 Oct 9.
Radioimmunotherapy (RIT) using (131)I-3F8 injected into cerebrospinal fluid (CSF) was a safe modality for the treatment of leptomeningeal metastases (JCO, 25:5465, 2007). A single-compartment pharmacokinetic model described previously (JNM 50:1324, 2009) showed good fitting to the CSF radioactivity data obtained from patients. We now describe a two-compartment model to account for the ventricular reservoir of (131)I-3F8 and to identify limiting factors that may impact therapeutic ratio.
Each parameter was examined for its effects on (1) the area under the radioactivity concentration curve of the bound antibody (AUC[C(IAR)]), (2) that of the unbound antibody AUC[C(IA)], and (3) their therapeutic ratio (AUC[C(IAR)]/AUC[C(IA)]).
Data fitting showed that CSF kBq/ml data fitted well using the two-compartment model (R = 0.95 ± 0.03). Correlations were substantially better when compared to the one-compartment model (R = 0.92 ± 0.11 versus 0.77 ± 0.21, p = 0.005). In addition, we made the following new predictions: (1) Increasing immunoreactivity of (131)I-3F8 from 10% to 90% increased both (AUC[C(IAR)]) and therapeutic ratio ([AUC[C(IAR)]/AUC[C(IA)]] by 7.4 fold, (2) When extrapolated to the clinical setting, the model predicted that if (131)I-3F8 could be split into 4 doses of 1.4 mg each and given at ≥24 hours apart, an antibody affinity of K(D) of 4 × 10(-9) at 50% immunoreactivity were adequate in order to deliver ≥100 Gy to tumor cells while keeping normal CSF exposure to <10 Gy.
This model predicted that immunoreactivity, affinity and optimal scheduling of antibody injections were crucial in improving therapeutic index.
使用(131)I-3F8 注入脑脊液(CSF)的放射免疫疗法(RIT)是治疗脑膜转移的安全方式(JCO,25:5465,2007)。先前描述的单室药代动力学模型(JNM 50:1324,2009)显示,它与从患者获得的 CSF 放射性数据拟合良好。我们现在描述一个双室模型,以解释(131)I-3F8 的心室储库,并确定可能影响治疗比的限制因素。
检查每个参数对(1)结合抗体放射性浓度曲线下面积(AUC[C(IAR)])、(2)未结合抗体 AUC[C(IA)]和(3)它们的治疗比(AUC[C(IAR)]/AUC[C(IA)]的影响。
数据拟合表明,使用双室模型可很好地拟合 CSF kBq/ml 数据(R=0.95±0.03)。与单室模型相比,相关性要好得多(R=0.92±0.11 与 0.77±0.21,p=0.005)。此外,我们做出了以下新预测:(1)将(131)I-3F8 的免疫反应性从 10%提高到 90%,会使(AUC[C(IAR)])和治疗比([AUC[C(IAR)]/AUC[C(IA)]])分别增加 7.4 倍,(2)当外推到临床环境时,该模型预测,如果(131)I-3F8 可以分为 4 个剂量,每个剂量为 1.4 mg,并且间隔时间超过 24 小时,那么在 50%免疫反应性时,抗体亲和力 K(D)为 4×10(-9)足以向肿瘤细胞输送≥100 Gy,同时保持正常 CSF 暴露量<10 Gy。
该模型预测,免疫反应性、亲和力和抗体注射的最佳时间安排对于提高治疗指数至关重要。