Das Siddhartha, Chakraborty Suman
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
Langmuir. 2009 Sep 1;25(17):9863-72. doi: 10.1021/la900956k.
In this work, we theoretically investigate the implications of streaming potential on the transport and size-based separation of charged solutes in nanoscale confinements. By employing a regular perturbation analysis, we demonstrate that the consideration of streaming potential establishes a new paradigm of size-based separation of charged solutes in nanochannels. Depending on the sizes of the particles being handled, we establish two distinctive separation regimes. For smaller particles with significantly large electrophoretic mobilities, electrophoretic transport mechanisms predominantly influence the solutal transport characteristics, whereas for larger particles the combined pressure-driven and back electroosmotic transport mechanisms essentially dictate the resultant separation characteristics. The extent of improvement in separation characteristics, on account of the consideration of streaming effect, largely depends on the consideration of particle-wall interactions. For cases without wall effects, the streaming potential may induce dramatic enhancements in the resolution of separation for small particles by exploiting optimal combinations of zeta potential values and relative thicknesses of the electrical double layers. However, with wall effect considerations, similar combinations of zeta potential and electrical double-layer thicknesses may give rise to dramatic improvements in the separation characteristics over a much wider range of particle sizes by interacting nontrivially with the streaming potential effects. Such confluences may be exploited in practice for designing efficient nanofluidic separation systems.
在这项工作中,我们从理论上研究了流动电势对纳米尺度受限空间中带电溶质的传输和基于尺寸的分离的影响。通过进行正则微扰分析,我们证明了流动电势的考虑为纳米通道中带电溶质基于尺寸的分离建立了一种新范式。根据所处理颗粒的大小,我们建立了两种不同的分离模式。对于具有显著大电泳迁移率的较小颗粒,电泳传输机制主要影响溶质的传输特性,而对于较大颗粒,压力驱动和反向电渗流传输机制的组合基本上决定了最终的分离特性。由于考虑了流动效应,分离特性的改善程度在很大程度上取决于颗粒与壁面相互作用的考虑。对于没有壁面效应的情况,流动电势可以通过利用zeta电势值和双电层相对厚度的最佳组合,显著提高小颗粒的分离分辨率。然而,考虑壁面效应时,zeta电势和双电层厚度的类似组合可能通过与流动电势效应进行非平凡相互作用,在更广泛的颗粒尺寸范围内显著改善分离特性。这种融合在实际中可用于设计高效的纳米流体分离系统。