Suppr超能文献

纳米通道中的电动传输。2. 实验

Electrokinetic transport in nanochannels. 2. Experiments.

作者信息

Pennathur Sumita, Santiago Juan G

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.

出版信息

Anal Chem. 2005 Nov 1;77(21):6782-9. doi: 10.1021/ac0508346.

Abstract

We present an experimental study of nanoscale electrokinetic transport in custom-fabricated quartz nanochannels using quantitative epifluorescence imaging and current monitoring techniques. One aim is to yield insight into electrical double layer physics and study the applicability of continuum theory to nanoscale electrokinetic systems. A second aim is to explore a new separation modality offered by nanoscale electrophoretic separations. We perform parametric variations of applied electric field, channel depth, background buffer concentration, and species valence to impose variations on zeta potential, effective mobility, and Debye length among other parameters. These measurements were used to validate a continuum theory-based analytical model presented in the first of this two-paper series. Our results confirm the usefulness of continuum theory in predicting electrokinetic transport and electrophoretic separations in nanochannels. Our model leverages independent measurements of zeta potential performed in a microchannel system at electrolyte concentrations of interest. These data yield a zeta potential versus concentration relation that is used as a boundary condition for the nanochannel electrokinetic transport model. The data and model comparisons together show that the effective mobility governing electrophoretic transport of charged species in nanochannels depends not only on ion mobility values but also on the shape of the electric double layer and analyte ion valence. We demonstrate a method we term electrokinetic separation by ion valence, whereby both ion valence and mobility may be determined independently from a comparison of micro- and nanoscale transport measurements.

摘要

我们使用定量落射荧光成像和电流监测技术,对定制制造的石英纳米通道中的纳米尺度电动输运进行了实验研究。一个目的是深入了解双电层物理,并研究连续介质理论在纳米尺度电动系统中的适用性。另一个目的是探索纳米尺度电泳分离提供的一种新的分离方式。我们对施加电场、通道深度、背景缓冲液浓度和物种价态进行参数变化,以对zeta电位、有效迁移率和德拜长度等其他参数施加变化。这些测量用于验证在本两篇论文系列的第一篇中提出的基于连续介质理论的分析模型。我们的结果证实了连续介质理论在预测纳米通道中的电动输运和电泳分离方面的有用性。我们的模型利用了在感兴趣的电解质浓度下在微通道系统中进行的zeta电位的独立测量。这些数据产生了zeta电位与浓度的关系,该关系用作纳米通道电动输运模型的边界条件。数据与模型的比较共同表明,控制纳米通道中带电物种电泳输运的有效迁移率不仅取决于离子迁移率值,还取决于双电层的形状和分析物离子价态。我们展示了一种我们称之为基于离子价态的电动分离方法,通过比较微米和纳米尺度的输运测量,可以独立确定离子价态和迁移率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验