School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
Math Biosci. 2009 Oct;221(2):101-20. doi: 10.1016/j.mbs.2009.07.003. Epub 2009 Jul 18.
We present a mathematical model for the vascularisation of a porous scaffold following implantation in vivo. The model is given as a set of coupled non-linear ordinary differential equations (ODEs) which describe the evolution in time of the amounts of the different tissue constituents inside the scaffold. Bifurcation analyses reveal how the extent of scaffold vascularisation changes as a function of the parameter values. For example, it is shown how the loss of seeded cells arising from slow infiltration of vascular tissue can be overcome using a prevascularisation strategy consisting of seeding the scaffold with vascular cells. Using certain assumptions it is shown how the system can be simplified to one which is partially tractable and for which some analysis is given. Limited comparison is also given of the model solutions with experimental data from the chick chorioallantoic membrane (CAM) assay.
我们提出了一个在体内植入后多孔支架血管生成的数学模型。该模型为一组耦合的非线性常微分方程(ODE),描述了支架内不同组织成分随时间的演化。分支分析揭示了支架血管化的程度如何随参数值的变化而变化。例如,展示了如何使用包含将血管细胞接种到支架中的预血管化策略来克服由于血管组织的缓慢渗透而导致的种子细胞的损失。使用某些假设,展示了如何将系统简化为部分可处理的系统,并给出了一些分析。还对模型解与鸡胚绒毛尿囊膜(CAM)测定的实验数据进行了有限的比较。