Burada P Sekhar, Schmid Gerhard, Hänggi Peter
Institut für Physik, Universität Augsburg, Universitätsstrasse 1, D-86135 Augsburg, Germany.
Philos Trans A Math Phys Eng Sci. 2009 Aug 28;367(1901):3157-71. doi: 10.1098/rsta.2009.0068.
Biased diffusive transport of Brownian particles through irregularly shaped, narrow confining quasi-one-dimensional structures is investigated. The complexity of the higher dimensional diffusive dynamics is reduced by means of the so-called Fick-Jacobs approximation, yielding an effective one-dimensional stochastic dynamics. Accordingly, the elimination of transverse, equilibrated degrees of freedom stemming from geometrical confinements and/or bottlenecks causes entropic potential barriers that the particles have to overcome when moving forward noisily. The applicability and the validity of the reduced kinetic description are tested by comparing the approximation with Brownian dynamics simulations in full configuration space. This non-equilibrium transport in such quasi-one-dimensional irregular structures implies, for moderate-to-strong bias, a characteristic violation of the Sutherland-Einstein fluctuation-dissipation relation.
研究了布朗粒子通过形状不规则的狭窄准一维限制结构的有偏扩散输运。借助所谓的菲克 - 雅各布斯近似降低了高维扩散动力学的复杂性,从而得到有效的一维随机动力学。因此,源于几何限制和/或瓶颈的横向平衡自由度的消除导致了熵势垒,粒子在有噪声地向前移动时必须克服这些势垒。通过将该近似与全构型空间中的布朗动力学模拟进行比较,检验了简化动力学描述的适用性和有效性。在这种准一维不规则结构中的这种非平衡输运意味着,对于中等到强的偏置,特征性地违反了萨瑟兰 - 爱因斯坦涨落耗散关系。