Suppr超能文献

Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation.

作者信息

Gutiérrez Pablo, Escaff Daniel, Descalzi Orazio

机构信息

Complex Systems Group, Facultad de Ingeniería, Universidad de los Andes, Avenue San Carlos de Apoquindo 2200, Santiago, Chile.

出版信息

Philos Trans A Math Phys Eng Sci. 2009 Aug 28;367(1901):3227-38. doi: 10.1098/rsta.2009.0073.

Abstract

The cubic-quintic complex Ginzburg-Landau is the amplitude equation for systems in the vicinity of an oscillatory sub-critical bifurcation (Andronov-Hopf), and it shows different localized structures. For pulse-type localized structures, we review an approximation scheme that enables us to compute some properties of the structures, like their existence range. From that scheme, we obtain conditions for the existence of pulses in the upper limit of a control parameter. When we study the width of pulses in that limit, the analytical expression shows that it is related to the transition between pulses and fronts. This fact is consistent with numerical simulations.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验