Suppr超能文献

一维、二维和三维复立方-五次金兹堡-朗道方程耗散孤子解的稳定性判据

Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations.

作者信息

Skarka V, Aleksić N B

机构信息

Laboratoire POMA, UMR 6136 CNRS, Université d'Angers, 2, boulevard Lavoisier, 49045 Angers, Cedex 1, France.

出版信息

Phys Rev Lett. 2006 Jan 13;96(1):013903. doi: 10.1103/PhysRevLett.96.013903. Epub 2006 Jan 11.

Abstract

The generation and nonlinear dynamics of multidimensional optical dissipative solitonic pulses are examined. The variational method is extended to complex dissipative systems, in order to obtain steady state solutions of the (D + 1)-dimensional complex cubic-quintic Ginzburg-Landau equation (D = 1, 2, 3). A stability criterion is established fixing a domain of dissipative parameters for stable steady state solutions. Following numerical simulations, evolution of any input pulse from this domain leads to stable dissipative solitons.

摘要

研究了多维光学耗散孤子脉冲的产生及其非线性动力学。将变分方法扩展到复耗散系统,以获得(D + 1)维复立方-五次金兹堡-朗道方程(D = 1, 2, 3)的稳态解。建立了一个稳定性判据,确定了稳定稳态解的耗散参数域。通过数值模拟表明,来自该域的任何输入脉冲的演化都会导致稳定的耗散孤子。

相似文献

2
Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation.复立方-五次非线性金兹堡-朗道方程的啁啾耗散孤子
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046606. doi: 10.1103/PhysRevE.80.046606. Epub 2009 Oct 15.
3
Theory of dissipative solitons in complex Ginzburg-Landau systems.复金兹堡 - 朗道系统中的耗散孤子理论
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Aug;78(2 Pt 2):025601. doi: 10.1103/PhysRevE.78.025601. Epub 2008 Aug 26.
9
Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation.复金兹堡-朗道方程耗散局域波的动力学模型
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 2):036621. doi: 10.1103/PhysRevE.73.036621. Epub 2006 Mar 29.

引用本文的文献

1
Bright solitons in non-equilibrium coherent quantum matter.非平衡相干量子物质中的亮孤子
Proc Math Phys Eng Sci. 2016 Jan;472(2185):20150592. doi: 10.1098/rspa.2015.0592.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验