Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
Acc Chem Res. 2009 Oct 20;42(10):1607-16. doi: 10.1021/ar900103e.
Unactivated C(sp(3))-H bonds are ubiquitous in organic chemicals and hydrocarbon feedstocks. However, these resources remain largely untapped, and the development of efficient homogeneous methods for hydrocarbon functionalization by C-H activation is an attractive and unresolved challenge for synthetic chemists. Transition-metal catalysis offers an attractive possible means for achieving selective, catalytic C-H functionalization given the thermodynamically favorable nature of many desirable partial oxidation schemes and the propensity of transition-metal complexes to cleave C-H bonds. Selective C-H activation, typically by a single cleavage event to produce M-C(sp(3)) products, is possible through myriad reported transition-metal species. In contrast, several recent reports have shown that late transition metals may react with certain substrates to perform multiple C-H activations, generating M=C(sp(2)) complexes for further elaboration. In light of the rich reactivity of metal-bound carbenes, such a route could open a new manifold of reactivity for catalytic C-H functionalization, and we have targeted this strategy in our studies. In this Account, we highlight several early examples of late transition-metal complexes that have been shown to generate metal-bound carbenes by multiple C-H activations and briefly examine factors leading to the selective generation of metal carbenes through this route. Using these reports as a backdrop, we focus on the double C-H activation of ethers and amines at iridium complexes supported by Ozerov's amidophosphine PNP ligand (PNP = N(2-P(i)Pr(2)-4-Me-C(6)H(3))(2)), allowing isolation of unusual square-planar iridium(I) carbenes. These species exhibit reactivity that is distinct from the archetypal Fischer and Schrock designations. We present experimental and theoretical studies showing that, like the classical square-planar iridium(I) organometallics, these complexes are best described as nucleophilic at iridium. We discuss the classification of this reactivity in the context of a scheme originally delineated by Roper. These "Roper-type" carbenes perform a number of multiple-bond metatheses leading to atom and group transfer from electrophilic heterocumulene (e.g., CO(2), CS(2), PhNCS) and diazo (e.g., N(2)O, AdN(3)) reagents. In one instance, we have extended this methodology to a process for catalytic C-H functionalization by a double C-H activation-group transfer process. Although the scope of these reactions is currently limited, these new pathways may find broader utility as the reactivity of late-metal carbenes continues to be explored. Examination of alternative transition metals and supporting ligand sets will certainly be important. Nonetheless, our findings show that carbene generation by double C-H activation is a viable strategy for C-H functionalization, leading to products not accessible through traditional C(sp(3))-H activation pathways.
未活化的 C(sp(3))-H 键在有机化学和碳氢原料中普遍存在。然而,这些资源在很大程度上尚未开发,开发有效的均相方法通过 C-H 活化实现烃类功能化是合成化学家面临的一个有吸引力但尚未解决的挑战。鉴于许多理想的部分氧化方案的热力学有利性质以及过渡金属配合物断裂 C-H 键的倾向,过渡金属催化为选择性、催化 C-H 功能化提供了一种有吸引力的可能手段。通过多种报道的过渡金属物种可以实现选择性 C-H 活化,通常通过单个断裂事件产生 M-C(sp(3))产物。相比之下,最近的几项报告表明,后过渡金属可能与某些底物反应以进行多次 C-H 活化,生成用于进一步修饰的 M=C(sp(2))配合物。鉴于金属结合卡宾的丰富反应性,这种途径可能为催化 C-H 功能化开辟新的反应途径,我们在研究中针对这种策略。在本报告中,我们重点介绍了几个已证明通过多次 C-H 活化生成金属结合卡宾的后过渡金属配合物的早期实例,并简要探讨了通过该途径选择性生成金属卡宾的因素。以这些报告为背景,我们专注于铱配合物支持的 Ozerov 酰胺膦 PNP 配体(PNP=N(2-P(i)Pr(2)-4-Me-C(6)H(3))(2))上醚和胺的双重 C-H 活化,允许分离出不寻常的平面正方形铱(I)卡宾。这些物种表现出与典型的 Fischer 和 Schrock 设计不同的反应性。我们展示了实验和理论研究,表明这些配合物与经典的平面正方形铱(I)有机金属化合物一样,最好被描述为亲核性的铱。我们讨论了在 Roper 最初划定的方案背景下对这种反应性的分类。这些“Roper 型”卡宾进行了许多多重键交换反应,导致亲电杂cumulene(例如 CO(2)、CS(2)、PhNCS)和重氮(例如 N(2)O、AdN(3))试剂的原子和基团转移。在一种情况下,我们已经将这种方法扩展到通过双重 C-H 活化-基团转移过程进行催化 C-H 功能化的过程。尽管这些反应的范围目前有限,但随着后金属卡宾反应性的不断探索,这些新途径可能会有更广泛的用途。对替代过渡金属和支撑配体的研究肯定很重要。尽管如此,我们的发现表明,通过双重 C-H 活化生成卡宾是 C-H 功能化的一种可行策略,导致无法通过传统的 C(sp(3))-H 活化途径获得产物。