Young D F, Galiano M C, Lemon K, Chen Y-H, Andrejeva J, Duprex W P, Rima B K, Randall R E
Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK.
Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
J Gen Virol. 2009 Nov;90(Pt 11):2731-2738. doi: 10.1099/vir.0.013722-0. Epub 2009 Jul 22.
Although the Enders strain of mumps virus (MuV) encodes a functional V protein that acts as an interferon (IFN) antagonist, in multi-cycle growth assays MuV Enders grew poorly in naïve ('IFN-competent' Hep2) cells but grew to high titres in 'IFN-compromised' Hep2 cells. Even so, the growth rate of MuV Enders was significantly slower in 'IFN-compromised' Hep2 cells when compared with its replication rate in Vero cells and with the replication rate of parainfluenza virus type 5 (a closely related paramyxovirus) in both naïve and 'IFN-compromised' Hep2 cells. This suggests that a consequence of slower growth is that the IFN system of naïve Hep2 cells can respond quickly enough to control the growth of MuV Enders. This is supported by the finding that rapidly growing variants of MuV Enders that were selected on 'IFN-compromised' Hep2 cells (i.e. in the absence of any selection pressure exerted by the IFN response) also grew to high titres on naïve Hep2 cells. Sequencing of the complete genome of one of these variants identified a single point mutation that resulted in a substitution of a conserved asparagine by histidine at position 498 of the haemagglutinin-neuraminidase protein, although this mutation was not present in all rapidly growing variants. These results support the concept that there is a race between the ability of a cell to detect and respond to virus infection and the ability of a virus to block the IFN response. Importantly, this emphasizes that factors other than viral IFN antagonists influence the sensitivity of viruses to IFN.
尽管腮腺炎病毒(MuV)的恩德斯毒株编码一种功能性V蛋白,可作为干扰素(IFN)拮抗剂,但在多轮生长试验中,MuV恩德斯毒株在未经处理的(“IFN功能正常”的Hep2)细胞中生长不佳,而在“IFN功能受损”的Hep2细胞中能生长至较高滴度。即便如此,与在Vero细胞中的复制速率以及在未经处理和“IFN功能受损”的Hep2细胞中副流感病毒5型(一种密切相关的副粘病毒)的复制速率相比,MuV恩德斯毒株在“IFN功能受损”的Hep2细胞中的生长速率仍显著较慢。这表明生长较慢的一个结果是,未经处理的Hep2细胞的IFN系统能够迅速做出反应以控制MuV恩德斯毒株的生长。这一观点得到以下发现的支持:在“IFN功能受损”的Hep2细胞上筛选出的MuV恩德斯毒株的快速生长变体(即在没有IFN反应施加的任何选择压力的情况下)在未经处理的Hep2细胞上也能生长至较高滴度。对其中一个变体的全基因组进行测序,发现了一个单点突变,该突变导致血凝素神经氨酸酶蛋白第498位的保守天冬酰胺被组氨酸取代,不过并非所有快速生长变体都存在此突变。这些结果支持了这样一种概念,即细胞检测和应对病毒感染的能力与病毒阻断IFN反应的能力之间存在竞争。重要的是,这强调了除病毒IFN拮抗剂之外的其他因素也会影响病毒对IFN的敏感性。