Lin Wei-Hsiang, Wright Duncan E, Muraro Nara I, Baines Richard A
Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
J Neurophysiol. 2009 Sep;102(3):1994-2006. doi: 10.1152/jn.00613.2009. Epub 2009 Jul 22.
Diversity in neuronal signaling is a product not only of differential gene expression, but also of alternative splicing. However, although recognized, the precise contribution of alternative splicing in ion channel transcripts to channel kinetics remains poorly understood. Invertebrates, with their smaller genomes, offer attractive models to examine the contribution of splicing to neuronal function. In this study we report the sequencing and biophysical characterization of alternative splice variants of the sole voltage-gated Na+ gene (DmNav, paralytic), in late-stage embryos of Drosophila melanogaster. We identify 27 unique splice variants, based on the presence of 15 alternative exons. Heterologous expression, in Xenopus oocytes, shows that alternative exons j, e, and f primarily influence activation kinetics: when present, exon f confers a hyperpolarizing shift in half-activation voltage (V1/2), whereas j and e result in a depolarizing shift. The presence of exon h is sufficient to produce a depolarizing shift in the V1/2 of steady-state inactivation. The magnitude of the persistent Na+ current, but not the fast-inactivating current, in both oocytes and Drosophila motoneurons in vivo is directly influenced by the presence of either one of a pair of mutually exclusive, membrane-spanning exons, termed k and L. Transcripts containing k have significantly smaller persistent currents compared with those containing L. Finally, we show that transcripts lacking all cytoplasmic alternatively spliced exons still produce functional channels, indicating that splicing may influence channel kinetics not only through change to protein structure, but also by allowing differential modification (i.e., phosphorylation, binding of cofactors, etc.). Our results provide a functional basis for understanding how alternative splicing of a voltage-gated Na+ channel results in diversity in neuronal signaling.
神经元信号的多样性不仅是基因差异表达的产物,也是可变剪接的结果。然而,尽管可变剪接已被认识到,但其在离子通道转录本中对通道动力学的确切贡献仍知之甚少。无脊椎动物基因组较小,为研究剪接对神经元功能的贡献提供了有吸引力的模型。在本研究中,我们报告了黑腹果蝇晚期胚胎中唯一的电压门控钠基因(DmNav,麻痹基因)可变剪接变体的测序和生物物理特性。基于15个可变外显子的存在,我们鉴定出27个独特的剪接变体。在非洲爪蟾卵母细胞中的异源表达表明,可变外显子j、e和f主要影响激活动力学:当外显子f存在时,半激活电压(V1/2)出现超极化偏移,而j和e则导致去极化偏移。外显子h的存在足以使稳态失活的V1/2产生去极化偏移。在卵母细胞和体内的果蝇运动神经元中,持续钠电流的大小(而非快速失活电流)直接受到一对相互排斥的跨膜外显子k和L中任意一个的影响。与含有L的转录本相比,含有k的转录本的持续电流明显更小。最后,我们表明,缺乏所有细胞质可变剪接外显子的转录本仍能产生功能性通道,这表明剪接可能不仅通过改变蛋白质结构,还通过允许差异修饰(即磷酸化、辅因子结合等)来影响通道动力学。我们的结果为理解电压门控钠通道的可变剪接如何导致神经元信号多样性提供了功能基础。