Suppr超能文献

擒贼先擒王:端粒对 DNA 损伤反应的调节。

Taming the tiger by the tail: modulation of DNA damage responses by telomeres.

机构信息

Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, HenryWellcome Laboratory, Newcastle University, Tyne and Wear, UK.

出版信息

EMBO J. 2009 Aug 5;28(15):2174-87. doi: 10.1038/emboj.2009.176. Epub 2009 Jul 23.

Abstract

Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell-cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell-cycle division are discussed.

摘要

端粒从定义上讲是稳定且惰性的染色体末端,而内部染色体断裂是 DNA 损伤反应 (DDR) 的有力刺激物。端粒并没有像人们可能预期的那样将 DDR 蛋白排除在染色体末端之外,而是与许多 DDR 蛋白结合。然而,最强大的 DDR,那些可能诱导染色体融合或细胞周期停滞的 DDR,在端粒处受到抑制。在芽殖酵母中,许多在双链断裂 (DSB) 处积累最快的 DDR 蛋白在生理端粒维持中具有重要功能,而那些后来到达的 DDR 蛋白往往具有不太重要的功能。不同生物体中端粒结构的多样性已经进化,也许反映了这种多样性,不同的 DDR 蛋白在不同生物体的端粒生理学中似乎具有不同的作用。主要参考芽殖酵母等简单模式生物的研究,其中已经确立了 DDR 和端粒生物学的许多基本方面;讨论了端粒如何利用 DDR 途径的各个方面来维持端粒稳定性并允许细胞周期分裂的当前观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f6/2726689/cad575fe8656/emboj2009176f1.jpg

相似文献

1
Taming the tiger by the tail: modulation of DNA damage responses by telomeres.
EMBO J. 2009 Aug 5;28(15):2174-87. doi: 10.1038/emboj.2009.176. Epub 2009 Jul 23.
2
Similarities and differences between "uncapped" telomeres and DNA double-strand breaks.
Chromosoma. 2012 Apr;121(2):117-30. doi: 10.1007/s00412-011-0357-2. Epub 2011 Dec 28.
3
Hiding at the ends of yeast chromosomes: telomeres, nucleases and checkpoint pathways.
J Cell Sci. 2003 Oct 15;116(Pt 20):4057-65. doi: 10.1242/jcs.00765.
4
Drosophila cell cycle under arrest: uncapped telomeres plead guilty.
Cell Cycle. 2009 Apr 1;8(7):990-5. doi: 10.4161/cc.8.7.7960. Epub 2009 Apr 4.
5
Functional links between telomeres and proteins of the DNA-damage response.
Genes Dev. 2004 Aug 1;18(15):1781-99. doi: 10.1101/gad.1214504.
6
The regulation of the DNA damage response at telomeres: focus on kinases.
Biochem Soc Trans. 2021 Apr 30;49(2):933-943. doi: 10.1042/BST20200856.
7
Telomeres, histone code, and DNA damage response.
Cytogenet Genome Res. 2008;122(3-4):297-307. doi: 10.1159/000167816. Epub 2009 Jan 30.
8
Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping.
EMBO J. 2010 Dec 1;29(23):4020-34. doi: 10.1038/emboj.2010.267. Epub 2010 Nov 2.

引用本文的文献

1
A CDK-Dependent Phosphorylation of a Novel Domain of Rif1 Regulates its Function during Telomere Damage and Other Types of Stress.
Mol Cell Biol. 2023;43(5):185-199. doi: 10.1080/10985549.2023.2193768. Epub 2023 May 4.
2
Tpz1 prevents telomerase activation and protects telomeres by modulating the Stn1-Ten1 complex in fission yeast.
Commun Biol. 2019 Aug 7;2:297. doi: 10.1038/s42003-019-0546-8. eCollection 2019.
3
Condensin II subunit NCAPH2 associates with shelterin protein TRF1 and is required for telomere stability.
J Cell Physiol. 2019 Nov;234(11):20755-20768. doi: 10.1002/jcp.28681. Epub 2019 Apr 26.
4
Vps74 Connects the Golgi Apparatus and Telomeres in .
G3 (Bethesda). 2018 May 4;8(5):1807-1816. doi: 10.1534/g3.118.200172.
5
Systematic Analysis of the DNA Damage Response Network in Telomere Defective Budding Yeast.
G3 (Bethesda). 2017 Jul 5;7(7):2375-2389. doi: 10.1534/g3.117.042283.
6
Costs, benefits and redundant mechanisms of adaption to chronic low-dose stress in yeast.
Cell Cycle. 2016 Oct 17;15(20):2732-41. doi: 10.1080/15384101.2016.1218104. Epub 2016 Aug 11.
7
Polymerases ε and ∂ repair dysfunctional telomeres facilitated by salt.
Nucleic Acids Res. 2016 May 5;44(8):3728-38. doi: 10.1093/nar/gkw071. Epub 2016 Feb 15.
8
Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins.
PLoS One. 2015 Nov 13;10(11):e0142771. doi: 10.1371/journal.pone.0142771. eCollection 2015.
9
Fission Yeast Exo1 and Rqh1-Dna2 Redundantly Contribute to Resection of Uncapped Telomeres.
PLoS One. 2015 Oct 14;10(10):e0140456. doi: 10.1371/journal.pone.0140456. eCollection 2015.
10

本文引用的文献

1
Telomere maintenance and survival in saccharomyces cerevisiae in the absence of telomerase and RAD52.
Genetics. 2009 Jul;182(3):671-84. doi: 10.1534/genetics.109.102939. Epub 2009 Apr 20.
2
Roles for NBS1 in alternative nonhomologous end-joining of V(D)J recombination intermediates.
Mol Cell. 2009 Apr 10;34(1):13-25. doi: 10.1016/j.molcel.2009.03.009.
3
Sumoylation of RecQ helicase controls the fate of dysfunctional telomeres.
Mol Cell. 2009 Mar 13;33(5):559-69. doi: 10.1016/j.molcel.2009.01.027.
4
Drosophila cell cycle under arrest: uncapped telomeres plead guilty.
Cell Cycle. 2009 Apr 1;8(7):990-5. doi: 10.4161/cc.8.7.7960. Epub 2009 Apr 4.
5
Rif1 and rif2 inhibit localization of tel1 to DNA ends.
Mol Cell. 2009 Feb 13;33(3):312-22. doi: 10.1016/j.molcel.2008.12.027.
6
Control of telomere length by a trimming mechanism that involves generation of t-circles.
EMBO J. 2009 Apr 8;28(7):799-809. doi: 10.1038/emboj.2009.42. Epub 2009 Feb 12.
7
Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2688-93. doi: 10.1073/pnas.0809793106. Epub 2009 Feb 9.
9
DNA double-strand break processing: the beginning of the end.
Genes Dev. 2008 Nov 1;22(21):2903-7. doi: 10.1101/gad.1742408.
10
53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility.
Nature. 2008 Nov 27;456(7221):524-8. doi: 10.1038/nature07433. Epub 2008 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验