Suppr超能文献

新型隐球菌作为一种致病机制在光滑念珠菌中形成新染色体。

Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata.

作者信息

Poláková Silvia, Blume Christian, Zárate Julián Alvarez, Mentel Marek, Jørck-Ramberg Dorte, Stenderup Jørgen, Piskur Jure

机构信息

Department of Cell and Organism Biology, Lund University, SE-22362 Lund, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2688-93. doi: 10.1073/pnas.0809793106. Epub 2009 Feb 9.

Abstract

In eukaryotes, the number and rough organization of chromosomes is well preserved within isolates of the same species. Novel chromosomes and loss of chromosomes are infrequent and usually associated with pathological events. Here, we analyzed 40 pathogenic isolates of a haploid and asexual yeast, Candida glabrata, for their genome structure and stability. This organism has recently become the second most prevalent yeast pathogen in humans. Although the gene sequences were well conserved among different strains, their chromosome structures differed drastically. The most frequent events reshaping chromosomes were translocations of chromosomal arms. However, also larger segmental duplications were frequent and occasionally we observed novel chromosomes. Apparently, this yeast can generate a new chromosome by duplication of chromosome segments carrying a centromere and subsequently adding novel telomeric ends. We show that the observed genome plasticity is connected with antifungal drug resistance and it is likely an advantage in the human body, where environmental conditions fluctuate a lot.

摘要

在真核生物中,同一物种的分离株内染色体的数量和大致组织结构保存良好。新染色体的出现和染色体的丢失很少见,通常与病理事件有关。在这里,我们分析了40株单倍体无性酵母光滑念珠菌的致病分离株的基因组结构和稳定性。这种微生物最近已成为人类中第二常见的酵母病原体。尽管不同菌株之间的基因序列保守性良好,但它们的染色体结构却有很大差异。重塑染色体最常见的事件是染色体臂的易位。然而,较大的片段重复也很常见,偶尔我们还观察到新染色体。显然,这种酵母可以通过复制携带着丝粒的染色体片段并随后添加新的端粒末端来产生新染色体。我们表明,观察到的基因组可塑性与抗真菌药物耐药性有关,并且在人体这种环境条件波动很大的地方,它可能是一种优势。

相似文献

1
Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2688-93. doi: 10.1073/pnas.0809793106. Epub 2009 Feb 9.
2
Small chromosomes among Danish Candida glabrata isolates originated through different mechanisms.
Antonie Van Leeuwenhoek. 2013 Jul;104(1):111-22. doi: 10.1007/s10482-013-9931-3. Epub 2013 May 14.
3
Genome structure and dynamics of the yeast pathogen Candida glabrata.
FEMS Yeast Res. 2014 Jun;14(4):529-35. doi: 10.1111/1567-1364.12145. Epub 2014 Mar 10.
4
Genotypic, phenotypic, and proteomic characterization of Candida glabrata during sequential fluconazole exposure.
J Investig Clin Dent. 2011 May;2(2):117-27. doi: 10.1111/j.2041-1626.2011.00044.x. Epub 2011 Feb 18.
5
Galleria mellonella as a host model to study Candida glabrata virulence and antifungal efficacy.
Virulence. 2017 Nov 17;8(8):1909-1917. doi: 10.1080/21505594.2017.1347744. Epub 2017 Aug 1.
7
Role of CgTpo4 in Polyamine and Antimicrobial Peptide Resistance: Determining Virulence in .
Int J Mol Sci. 2021 Jan 29;22(3):1376. doi: 10.3390/ijms22031376.
8
Ploidy Variation and Spontaneous Haploid-Diploid Switching of Candida glabrata Clinical Isolates.
mSphere. 2022 Aug 31;7(4):e0026022. doi: 10.1128/msphere.00260-22. Epub 2022 Jun 21.
9
Vacuolar proton-translocating ATPase is required for antifungal resistance and virulence of Candida glabrata.
PLoS One. 2019 Jan 23;14(1):e0210883. doi: 10.1371/journal.pone.0210883. eCollection 2019.
10
Candida glabrata: a deadly companion?
Yeast. 2014 Aug;31(8):279-88. doi: 10.1002/yea.3019. Epub 2014 Jun 13.

引用本文的文献

1
Leveraging synthetic genetic array screening to identify therapeutic targets and inhibitors for combatting azole resistance in .
Microbiol Spectr. 2025 Sep 2;13(9):e0252224. doi: 10.1128/spectrum.02522-24. Epub 2025 Aug 11.
2
Evolution of antifungal resistance in the environment.
Nat Microbiol. 2025 Aug;10(8):1804-1815. doi: 10.1038/s41564-025-02055-y. Epub 2025 Jul 29.
4
Leveraging the microbiome to combat antibiotic resistant gynecological infections.
NPJ Antimicrob Resist. 2025 Apr 23;3(1):32. doi: 10.1038/s44259-025-00106-2.
5
Hotspot gene conversion between FKS1 and FKS2 in echinocandin resistant Candida glabrata serial isolates.
NPJ Antimicrob Resist. 2025 Apr 17;3(1):31. doi: 10.1038/s44259-025-00102-6.
8
Single-cell detection of copy number changes reveals dynamic mechanisms of adaptation to antifungals in Candida albicans.
Nat Microbiol. 2024 Nov;9(11):2923-2938. doi: 10.1038/s41564-024-01795-7. Epub 2024 Sep 3.
9
Long-term stability of acquired drug resistance and resistance associated mutations in the fungal pathogen ().
Front Cell Infect Microbiol. 2024 Jul 15;14:1416509. doi: 10.3389/fcimb.2024.1416509. eCollection 2024.

本文引用的文献

1
3
Effects of aneuploidy on cellular physiology and cell division in haploid yeast.
Science. 2007 Aug 17;317(5840):916-24. doi: 10.1126/science.1142210.
4
Changes in karyotype and azole susceptibility of sequential bloodstream isolates from patients with Candida glabrata candidemia.
J Clin Microbiol. 2007 Aug;45(8):2385-91. doi: 10.1128/JCM.00381-07. Epub 2007 Jun 20.
5
Assessment of Candida glabrata strain relatedness by pulsed-field gel electrophoresis and multilocus sequence typing.
J Clin Microbiol. 2007 Aug;45(8):2452-9. doi: 10.1128/JCM.00699-07. Epub 2007 Jun 6.
6
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Mol Biol Evol. 2007 Aug;24(8):1596-9. doi: 10.1093/molbev/msm092. Epub 2007 May 7.
7
A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7628-33. doi: 10.1073/pnas.0611195104. Epub 2007 Apr 24.
8
Aneuploidy and isochromosome formation in drug-resistant Candida albicans.
Science. 2006 Jul 21;313(5785):367-70. doi: 10.1126/science.1128242.
9
Transfer of genetic material between pathogenic and food-borne yeasts.
Appl Environ Microbiol. 2006 Jul;72(7):5122-5. doi: 10.1128/AEM.00293-06.
10
Break-induced replication and recombinational telomere elongation in yeast.
Annu Rev Biochem. 2006;75:111-35. doi: 10.1146/annurev.biochem.74.082803.133234.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验