Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
Genomics. 2009 Nov;94(5):294-307. doi: 10.1016/j.ygeno.2009.07.003. Epub 2009 Jul 22.
We have used Saccharomyces cerevisiae to identify toxicologically important proteins and pathways involved in arsenic-induced toxicity and carcinogenicity in humans. We performed a systemic screen of the complete set of 4733 haploid S. cerevisiae single-gene-deletion mutants to identify those that have decreased or increased growth, relative to wild type, after exposure to sodium arsenite (NaAsO(2)). IC(50) values for all mutants were determined to further validate our results. Ultimately we identified 248 mutants sensitive to arsenite and 5 mutants resistant to arsenite exposure. We analyzed the proteins corresponding to arsenite-sensitive mutants and determined that they belonged to functional categories that include protein binding, phosphate metabolism, vacuolar/lysosomal transport, protein targeting, sorting, and translocation, cell growth/morphogenesis, cell polarity and filament formation. Furthermore, these data were mapped onto a protein interactome to identify arsenite-toxicity-modulating networks. These networks are associated with the cytoskeleton, ubiquitination, histone acetylation and the MAPK signaling pathway. Our studies have potential implications for understanding toxicity and carcinogenesis in arsenic-induced human conditions, such as cancer and aging.
我们使用酿酒酵母鉴定出与砷诱导的人类毒性和致癌性有关的毒理学上重要的蛋白质和途径。我们对 4733 个酿酒酵母单基因缺失突变体的完整集合进行了系统筛选,以确定相对于野生型,在暴露于亚砷酸钠(NaAsO(2))后,生长减少或增加的那些。对所有突变体进行了 IC(50) 值测定以进一步验证我们的结果。最终,我们鉴定出 248 个对亚砷酸盐敏感的突变体和 5 个对亚砷酸盐暴露有抗性的突变体。我们分析了对应于亚砷酸盐敏感突变体的蛋白质,并确定它们属于包括蛋白质结合、磷酸盐代谢、液泡/溶酶体运输、蛋白质靶向、分拣和易位、细胞生长/形态发生、细胞极性和丝形成等功能类别。此外,这些数据被映射到蛋白质相互作用组上,以鉴定砷毒性调节网络。这些网络与细胞骨架、泛素化、组蛋白乙酰化和 MAPK 信号通路有关。我们的研究对于理解砷诱导的人类疾病(如癌症和衰老)中的毒性和致癌作用具有潜在意义。