Department of Computer Sciences, 1 University Station C0500, The University of Texas at Austin, Austin, TX 78712, USA.
Bioinformatics. 2009 Nov 15;25(22):2955-61. doi: 10.1093/bioinformatics/btp461. Epub 2009 Jul 24.
High-throughput protein identification experiments based on tandem mass spectrometry (MS/MS) often suffer from low sensitivity and low-confidence protein identifications. In a typical shotgun proteomics experiment, it is assumed that all proteins are equally likely to be present. However, there is often other evidence to suggest that a protein is present and confidence in individual protein identification can be updated accordingly.
We develop a method that analyzes MS/MS experiments in the larger context of the biological processes active in a cell. Our method, MSNet, improves protein identification in shotgun proteomics experiments by considering information on functional associations from a gene functional network. MSNet substantially increases the number of proteins identified in the sample at a given error rate. We identify 8-29% more proteins than the original MS experiment when applied to yeast grown in different experimental conditions analyzed on different MS/MS instruments, and 37% more proteins in a human sample. We validate up to 94% of our identifications in yeast by presence in ground-truth reference sets.
Software and datasets are available at http://aug.csres.utexas.edu/msnet
基于串联质谱(MS/MS)的高通量蛋白质鉴定实验通常存在灵敏度低和置信度低的问题。在典型的鸟枪法蛋白质组学实验中,假设所有蛋白质出现的可能性相同。然而,通常还有其他证据表明蛋白质存在,并且可以相应地更新对单个蛋白质鉴定的置信度。
我们开发了一种方法,该方法将 MS/MS 实验分析置于细胞中活跃的生物过程的更大背景下。我们的方法 MSNet 通过考虑来自基因功能网络的功能关联信息,改进了鸟枪法蛋白质组学实验中的蛋白质鉴定。MSNet 在给定错误率下,在样本中鉴定出的蛋白质数量大大增加。当应用于在不同 MS/MS 仪器上分析的不同实验条件下生长的酵母时,我们比原始 MS 实验多鉴定出 8-29%的蛋白质,在人类样本中多鉴定出 37%的蛋白质。我们通过在真实参考集中存在来验证酵母中高达 94%的鉴定。
软件和数据集可在 http://aug.csres.utexas.edu/msnet 上获得。