Suppr超能文献

基于峰峰间期分布对神经元输入进行最大似然解码。

Maximum likelihood decoding of neuronal inputs from an interspike interval distribution.

作者信息

Zhang Xuejuan, You Gongqiang, Chen Tianping, Feng Jianfeng

机构信息

Mathematical Department, Zhejiang Normal University, Jinhua, PR China.

出版信息

Neural Comput. 2009 Nov;21(11):3079-105. doi: 10.1162/neco.2009.06-08-807.

Abstract

An expression for the probability distribution of the interspike interval of a leaky integrate-and-fire (LIF) model neuron is rigorously derived, based on recent theoretical developments in the theory of stochastic processes. This enables us to find for the first time a way of developing maximum likelihood estimates (MLE) of the input information (e.g., afferent rate and variance) for an LIF neuron from a set of recorded spike trains. Dynamic inputs to pools of LIF neurons both with and without interactions are efficiently and reliably decoded by applying the MLE, even within time windows as short as 25 msec.

摘要

基于随机过程理论的最新发展,严格推导了漏电积分发放(LIF)模型神经元的峰间期概率分布表达式。这使我们首次找到了一种从一组记录的尖峰序列中为LIF神经元开发输入信息(例如,传入速率和方差)的最大似然估计(MLE)的方法。通过应用MLE,即使在短至25毫秒的时间窗口内,对有交互作用和无交互作用的LIF神经元池的动态输入也能得到有效且可靠的解码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验