Microsoft Corporation, Bellevue, WA 98007, USA.
IEEE Trans Biomed Eng. 2009 Dec;56(12):2937-48. doi: 10.1109/TBME.2009.2027332. Epub 2009 Jul 24.
The question of how perception arises from neuronal activity in the visual cortex is of fundamental importance to many issues in cognitive neuroscience. To address this question, we adopt a unique experimental paradigm in which bistable stimuli, namely structure from motion (SFM), are employed to dissociate the visual input from perception while monitoring cortical neural activity. In this paper, we analyze the dynamic responses of the multiunit activity, simultaneously collected from multiple channels in the middle temporal visual cortex of awake behaving macaque monkeys, for decoding the bistable percepts of SFM in a response-time (RT) perceptual discrimination task. Our goal is to understand how the perceptual discriminative information of neuronal population activity evolves and accumulates over time to mediate behaviors. Here, we used a discriminative classifier called the logistic regression and contrasted it with two generative classifiers, namely the quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA), to achieve the spatiotemporal integration of neural activity and dynamically decode the perceptual reports on a single-trial basis. We found that the logistic regression outperforms both QDA and LDA in terms of decoding accuracy for both single-channel and multichannel decoding of bistable percepts. Subsequent analysis of the temporal profile of neural population decoding in relation to RT revealed that the amplitude and latency of the decoding accuracy are highly correlated with the RT, thus indicating that the monkeys respond faster when the decoding accuracy is higher and has shorter latency. These findings suggest that enhanced neuronal discrimination ability and shortened neuronal discrimination latency may impact monkeys' behaviors.
视觉皮层中神经元活动如何产生感知的问题对认知神经科学的许多问题都具有重要意义。为了解决这个问题,我们采用了一种独特的实验范式,在该范式中,使用双稳态刺激(即运动结构)来分离视觉输入和感知,同时监测皮层神经活动。在本文中,我们分析了在清醒行为猕猴的中颞叶视觉皮层中从多个通道同时收集的多单位活动的动态响应,以在响应时间(RT)感知辨别任务中解码运动结构的双稳态知觉。我们的目标是了解神经元群体活动的感知辨别信息如何随时间演变和积累,以介导行为。在这里,我们使用了一种称为逻辑回归的判别分类器,并将其与两种生成分类器(即二次判别分析(QDA)和线性判别分析(LDA))进行了对比,以实现神经活动的时空整合,并在单次试验的基础上动态解码感知报告。我们发现,逻辑回归在单通道和多通道解码双稳态知觉的准确性方面均优于 QDA 和 LDA。随后对与 RT 相关的神经群体解码的时间分布进行分析表明,解码准确性的幅度和潜伏期与 RT 高度相关,这表明当解码准确性更高且潜伏期更短时,猴子的反应速度更快。这些发现表明,增强的神经元辨别能力和缩短的神经元辨别潜伏期可能会影响猴子的行为。