Lecut Christelle, Frederix Kim, Johnson Daniel M, Deroanne Christophe, Thiry Marc, Faccinetto Céline, Marée Raphaël, Evans Richard J, Volders Paul G A, Bours Vincent, Oury Cécile
GIGA-Research Human Genetics Unit, University of Liège, Liège, Belgium.
J Immunol. 2009 Aug 15;183(4):2801-9. doi: 10.4049/jimmunol.0804007. Epub 2009 Jul 27.
ATP, released at the leading edge of migrating neutrophils, amplifies chemotactic signals. The aim of our study was to investigate whether neutrophils express ATP-gated P2X(1) ion channels and whether these channels could play a role in chemotaxis. Whole-cell patch clamp experiments showed rapidly desensitizing currents in both human and mouse neutrophils stimulated with P2X(1) agonists, alphabeta-methylene ATP (alphabetaMeATP) and betagammaMeATP. These currents were strongly impaired or absent in neutrophils from P2X(1)(-/-) mice. In Boyden chamber assays, alphabetaMeATP provoked chemokinesis and enhanced formylated peptide- and IL-8-induced chemotaxis of human neutrophils. This agonist similarly increased W-peptide-induced chemotaxis of wild-type mouse neutrophils, whereas it had no effect on P2X(1)(-/-) neutrophils. In human as in mouse neutrophils, alphabetaMeATP selectively activated the small RhoGTPase RhoA that caused reversible myosin L chain phosphorylation. Moreover, the alphabetaMeATP-elicited neutrophil movements were prevented by the two Rho kinase inhibitors, Y27632 and H1152. In a gradient of W-peptide, P2X(1)(-/-) neutrophils migrated with reduced speed and displayed impaired trailing edge retraction. Finally, neutrophil recruitment in mouse peritoneum upon Escherichia coli injection was enhanced in wild-type mice treated with alphabetaMeATP, whereas it was significantly impaired in the P2X(1)(-/-) mice. Thus, activation of P2X(1) ion channels by ATP promotes neutrophil chemotaxis, a process involving Rho kinase-dependent actomyosin-mediated contraction at the cell rear. These ion channels may therefore play a significant role in host defense and inflammation.
三磷酸腺苷(ATP)在迁移的中性粒细胞前沿释放,可放大趋化信号。我们研究的目的是调查中性粒细胞是否表达ATP门控的P2X(1)离子通道,以及这些通道是否在趋化作用中发挥作用。全细胞膜片钳实验显示,用P2X(1)激动剂αβ-亚甲基ATP(αβMeATP)和βγMeATP刺激人及小鼠中性粒细胞时,电流会迅速脱敏。来自P2X(1)(-/-)小鼠的中性粒细胞中,这些电流严重受损或缺失。在Boyden小室试验中,αβMeATP可引发化学运动,并增强人中性粒细胞对甲酰化肽和白细胞介素-8诱导的趋化作用。该激动剂同样增加了野生型小鼠中性粒细胞对W肽诱导的趋化作用,而对P2X(1)(-/-)中性粒细胞没有影响。在人及小鼠中性粒细胞中,αβMeATP选择性激活小RhoGTP酶RhoA,导致肌球蛋白轻链可逆性磷酸化。此外,两种Rho激酶抑制剂Y27632和H1152可阻止αβMeATP引发的中性粒细胞运动。在W肽梯度中,P2X(1)(-/-)中性粒细胞迁移速度降低,后缘回缩受损。最后,用αβMeATP处理的野生型小鼠在注射大肠杆菌后,小鼠腹膜中的中性粒细胞募集增强,而P2X(1)(-/-)小鼠则明显受损。因此,ATP激活P2X(1)离子通道可促进中性粒细胞趋化作用,这一过程涉及细胞后部Rho激酶依赖性肌动球蛋白介导的收缩。因此,这些离子通道可能在宿主防御和炎症中发挥重要作用。