Lajeunesse Marc J
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA.
Am Nat. 2009 Sep;174(3):369-81. doi: 10.1086/603628.
Meta-analysis has contributed substantially to shifting paradigms in ecology and has become the primary method for quantitatively synthesizing published research. However, an emerging challenge is the lack of a statistical protocol to synthesize studies and evaluate sources of bias while simultaneously accounting for phylogenetic nonindependence of taxa. Phylogenetic nonindependence arises from homology, the similarity of taxa due to shared ancestry, and treating related taxa as independent data violates assumptions of statistics. Given that an explicit goal of meta-analysis is to generalize research across a broad range of taxa, then phylogenetic nonindependence may threaten conclusions drawn from such reviews. Here I outline a statistical framework that integrates phylogenetic information into conventional meta-analysis when (a) taking a weighted average of effect sizes using fixed- and random-effects models and (b) testing for homogeneity of variances. I also outline how to test evolutionary hypotheses with meta-analysis by describing a method that evaluates phylogenetic conservatism and a model-selection framework that competes neutral and adaptive hypotheses to explain variation in meta-analytical data. Finally, I address several theoretical and practical issues relating to the application and availability of phylogenetic information for meta-analysis.
元分析在转变生态学范式方面发挥了重要作用,并已成为定量综合已发表研究的主要方法。然而,一个新出现的挑战是缺乏一种统计方案来综合研究并评估偏差来源,同时还要考虑分类群的系统发育非独立性。系统发育非独立性源于同源性,即由于共同祖先导致的分类群相似性,将相关分类群视为独立数据会违反统计假设。鉴于元分析的一个明确目标是将研究推广到广泛的分类群,那么系统发育非独立性可能会威胁到此类综述得出的结论。在此,我概述了一个统计框架,当(a)使用固定效应模型和随机效应模型对效应大小进行加权平均,以及(b)检验方差齐性时,将系统发育信息整合到传统元分析中。我还通过描述一种评估系统发育保守性的方法和一个比较中性和适应性假设以解释元分析数据变异的模型选择框架,概述了如何用元分析来检验进化假设。最后,我讨论了与元分析中系统发育信息的应用和可用性相关的几个理论和实际问题。