Dzikovski Boris, Tipikin Dmitriy, Livshits Vsevolod, Earle Keith, Freed Jack
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Phys Chem Chem Phys. 2009 Aug 21;11(31):6676-88. doi: 10.1039/b903490k. Epub 2009 Jun 30.
The molecular dynamics of spin-labeled compounds included into the solid phase of cyclodextrins (CDs) has been studied using conventional (X-band) ESR at 9 GHz and high-field high-frequency (HFHF) ESR at 240 and 170 GHz. The patterns of axial rotation at these higher frequencies are clear just by inspection of the spectrum, unlike the case for 9 GHz spectra. That is HFHF ESR is sensitive to molecular motion about the diffusion axis collinear with the X, Y or Z-direction of the magnetic g- and A-tensors of the nitroxide moiety (referred to, respectively, as X, Y or Z-rotation). For doxyl stearic acids (Z-rotation) and TEMPOyl caprylate (X-rotation) included in beta- and gamma-CDs we were able to determine the rate of molecular motion and the corresponding potential barriers. We emphasize that determining the rate of Z-rotation by ESR is feasible only using HFHF ESR. For the X-rotation case we suggest that the motion of the nitroxide moiety consists of fast small-angle librations about the magnetic X-axis superimposed by rotational diffusion about the same axis. The potential barrier of 1.7 Kcal mol(-1) for this rotational diffusion is unusually low. A fascinating feature of TEMPO derivatives included in beta-CD is the detectable molecular motion at temperatures below 77 K. For the other CD-spin probe systems, we used multifrequency analysis to assign the conformations of spin-labeled molecules. A dramatic spectral change for 16-sasl in beta- and gamma-CDs at approximately 260 K corresponds to a tilting of the position of the nitroxide moiety on the rotating molecule relative to the long diffusion axis, while for TEMPO derivatives in gamma-cyclodextrin below 200 K, we observe a rapid transition from fast to very slow rotational motion. More complex features are best studied by means of multifrequency ESR experiments. The visual clarity and the simplicity of analysis of the ESR spectra shown in this work should provide a benchmark for future studies of molecular motion by HFHF ESR.
利用9GHz的常规(X波段)电子自旋共振(ESR)以及240GHz和170GHz的高场高频(HFHF)ESR,研究了包合在环糊精(CD)固相中的自旋标记化合物的分子动力学。与9GHz光谱的情况不同,仅通过检查光谱就能清楚地看到这些较高频率下的轴向旋转模式。也就是说,HFHF ESR对围绕与氮氧化物部分的磁g张量和A张量的X、Y或Z方向共线的扩散轴的分子运动敏感(分别称为X、Y或Z旋转)。对于包合在β-和γ-环糊精中的硬脂酸多氧自由基(Z旋转)和辛酸TEMPOyl(X旋转),我们能够确定分子运动速率和相应的势垒。我们强调,只有使用HFHF ESR才能通过ESR确定Z旋转速率。对于X旋转的情况,我们认为氮氧化物部分的运动由围绕磁X轴的快速小角度摆动叠加围绕同一轴的旋转扩散组成。这种旋转扩散的1.7千卡摩尔-1的势垒异常低。包合在β-环糊精中的TEMPO衍生物的一个引人入胜的特征是在低于77K的温度下可检测到分子运动。对于其他CD-自旋探针系统,我们使用多频分析来确定自旋标记分子的构象。β-和γ-环糊精中16-sasl在约260K时的显著光谱变化对应于旋转分子上氮氧化物部分相对于长扩散轴的位置倾斜,而对于γ-环糊精中低于200K的TEMPO衍生物,我们观察到从快速旋转运动到非常缓慢旋转运动的快速转变。更复杂的特征最好通过多频ESR实验来研究。这项工作中所示的ESR光谱的视觉清晰度和分析的简单性应为未来通过HFHF ESR进行分子运动研究提供一个基准。