Moon Hyunjin, Han Songi, Scott Susannah L
Department of Chemical Engineering , University of California , Santa Barbara , California 93106-5080 , USA . Email:
Department of Chemistry & Biochemistry , University of California , Santa Barbara , California 93106-9510 , USA.
Chem Sci. 2020 Mar 10;11(14):3702-3712. doi: 10.1039/d0sc00168f. eCollection 2020 Apr 14.
Surface polarity plays a key role in controlling molecular adsorption at solid-liquid interfaces, with major implications for reactions and separations. In this study, the chemical composition of periodic mesoporous organosilicas (PMOs) was varied by co-condensing Si(OEt) with organodisilanes, to create a homologous series of materials with similar surface areas, pore volumes, and hydroxyl contents. Their relative surface polarities, obtained by measuring the fluorescence of a solvatochromic dye, cover a wide range. In this series of PMO materials, EPR spectra of tethered nitroxide radicals show monotonically decreasing mobility as larger fractions of the radicals interact strongly with increasingly non-polar surfaces. The surface properties of the materials also correlate with their affinities for organic molecules dissolved in various solvents. The most polar PMO has negligible affinity for phenol, -cresol, or furfural when these molecules are dissolved in water. However, stronger solute-surface interactions and favor adsorption as the surface polarity decreases. The trend is reversed for furfural in benzene, where weaker solvent-surface interactions result in higher adsorption on polar surfaces. In DMSO, furfural adsorption is suppressed due to the similar strengths of solute-surface and solvent-surface interactions. Thus, the polarity of the surface relative to the solvent is critical for molecular adsorption. These findings show how adsorption/desorption can be precisely and systematically tuned by appropriate choice of both solvent and surface, and contribute to a predictive strategy for the design of catalytic and separations processes.
表面极性在控制固液界面的分子吸附中起着关键作用,对反应和分离具有重要意义。在本研究中,通过将四乙氧基硅(Si(OEt))与有机二硅烷共缩合来改变周期性介孔有机硅(PMO)的化学组成,以制备一系列具有相似表面积、孔体积和羟基含量的材料。通过测量溶剂化显色染料的荧光获得的它们的相对表面极性涵盖了很宽的范围。在这一系列的PMO材料中,随着自由基中较大比例与越来越非极性的表面强烈相互作用, tethered氮氧化物自由基的电子顺磁共振谱显示出迁移率单调下降。材料的表面性质也与其对溶解在各种溶剂中的有机分子的亲和力相关。当这些分子溶解在水中时,极性最强的PMO对苯酚、对甲酚或糠醛的亲和力可忽略不计。然而,随着表面极性降低,溶质 - 表面相互作用增强,有利于吸附。对于糠醛在苯中的情况,趋势相反,较弱的溶剂 - 表面相互作用导致在极性表面上的吸附更高。在二甲基亚砜(DMSO)中,由于溶质 - 表面和溶剂 - 表面相互作用强度相似,糠醛吸附受到抑制。因此,相对于溶剂的表面极性对于分子吸附至关重要。这些发现表明如何通过适当选择溶剂和表面来精确且系统地调节吸附/解吸,并有助于设计催化和分离过程的预测策略。