Suppr超能文献

铝籽晶外延硅纳米线的生长系统、结构及掺杂

Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires.

作者信息

Wacaser Brent A, Reuter Mark C, Khayyat Maha M, Wen Cheng-Yen, Haight Richard, Guha Supratik, Ross Frances M

机构信息

IBM TJ Watson Research Center, Yorktown Heights, New York 10598, USA.

出版信息

Nano Lett. 2009 Sep;9(9):3296-301. doi: 10.1021/nl9015792.

Abstract

We have examined the formation of silicon nanowires grown by self-assembly from Si substrates with thin aluminum films. Postgrowth and in situ investigations using various Al deposition and annealing conditions suggest that nanowire growth takes place with a supercooled liquid droplet (i.e., the vapor-liquid-solid system), even though the growth temperatures are below the bulk Al/Si eutectic temperature. Wire morphology as a function of processing conditions is also described. It is shown that when Al environmental exposure is prevented before wire growth a wide process window for wire formation can be achieved. Under optimum growth conditions, it is possible to produce excellent crystal quality nanowires with rapid growth rates, high surface densities, low diameter dispersion, and controlled tapering. Photoelectron spectroscopy measurements indicate that the use of Al leads to active doping levels that depend on the growth temperature in as-grown nanowires and increase when annealed. We suggest that these structural and electronic properties will be relevant to photovoltaic and other applications, where the more common use of Au is believed to be detrimental to performance.

摘要

我们研究了通过在带有薄铝膜的硅衬底上自组装生长硅纳米线的过程。利用各种铝沉积和退火条件进行的生长后和原位研究表明,即使生长温度低于块状铝/硅共晶温度,纳米线的生长也是通过过冷液滴(即气-液-固系统)进行的。还描述了线形态随加工条件的变化。结果表明,在纳米线生长之前防止铝暴露于环境中,可以实现较宽的线形成工艺窗口。在最佳生长条件下,有可能生产出具有快速生长速率、高表面密度、低直径分散和可控锥度的优质晶体纳米线。光电子能谱测量表明,使用铝会导致活性掺杂水平,该水平取决于生长纳米线中的生长温度,并在退火时增加。我们认为,这些结构和电子特性将与光伏及其他应用相关,在这些应用中,人们认为更常用的金对性能有害。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验