MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China.
J Theor Biol. 2009 Nov 7;261(1):17-22. doi: 10.1016/j.jtbi.2009.07.022. Epub 2009 Jul 28.
MicroRNAs (miRNAs) are important post-transcriptional regulators that repress gene expression by binding to the 3'UTRs of their target mRNAs. There are two main outcomes for the transcripts targeted by miRNAs: mRNA degradation and translational repression. It is still unclear what factors determine whether a target transcript is degraded or translationally repressed. In this study, we collected two classes of genes that are targeted by miR-1, miR-155, miR-16, miR-30a, and let-7b and built new computational models with machine-learning methods to predict the fates of target genes based on sequence features. The prediction results indicate that the sequence context of the miRNA binding site at the 3'UTR of a target gene plays an important role in determining how an miRNA regulates the expression of its target. Further analysis shows that four out of the five studied miRNAs probably share similar regulatory mechanisms on their target genes.
微小 RNA(miRNA)是重要的转录后调控因子,通过与靶 mRNA 的 3'UTR 结合来抑制基因表达。miRNA 靶向的转录本有两种主要的结果:mRNA 降解和翻译抑制。目前尚不清楚是什么因素决定了靶转录本是被降解还是被翻译抑制。在这项研究中,我们收集了两类受 miR-1、miR-155、miR-16、miR-30a 和 let-7b 靶向的基因,并使用机器学习方法构建了新的计算模型,根据序列特征预测靶基因的命运。预测结果表明,靶基因 3'UTR 上 miRNA 结合位点的序列上下文在决定 miRNA 如何调节其靶基因的表达方面起着重要作用。进一步的分析表明,在研究的五个 miRNA 中,有四个可能在其靶基因上具有相似的调控机制。