Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0687, USA.
Glycobiology. 2009 Nov;19(11):1204-13. doi: 10.1093/glycob/cwp111. Epub 2009 Jul 30.
Group B Streptococcus (GBS) is an important human pathogen and a model system for studying the roles of bacterial glycosylation in host-microbe interactions. Sialic acid (Sia), expressed prominently in the GBS capsular polysaccharide (CPS), mimics mammalian cell surface Sia and can interact with host Sia-binding proteins to subvert immune clearance mechanisms. Our earlier work has shown that GBS partially O-acetylates CPS Sia residues and employs an intracellular O-acetylation/de-O-acetylation cycle to control the final level of this surface Sia modification. Here, we examine the effects of point mutations in the NeuD O-acetyltransferase and NeuA O-acetylesterase on specific glycosylation phenotypes of GBS, pinpointing an isogenic strain pair that differs dramatically in the degree of the O-acetyl modification (80% versus 5%) while still expressing comparable levels of overall sialylation. Using these strains, higher levels of O-acetylation were found to protect GBS CPS Sia against enzymatic removal by microbial sialidases and to impede engagement of human Siglec-9, but not to significantly alter the ability of GBS to restrict complement C3b deposition on its surface. Additional experiments demonstrated that pH-induced migration of the O-acetyl modification from the 7- to 9-carbon position had a substantial impact on GBS-Siglec-9 interactions, with 7-O-acetylation exhibiting the strongest interference. These studies show that both the degree and position of the GBS O-acetyl modification influence Sia-specific interactions relevant to the host-pathogen relationship. We conclude that native GBS likely expresses a phenotype of intermediate Sia O-acetylation to strike a balance between competing selective pressures present in the host environment.
B 群链球菌(GBS)是一种重要的人类病原体,也是研究细菌糖基化在宿主-微生物相互作用中作用的模型系统。唾液酸(Sia)在 GBS 荚膜多糖(CPS)中表达显著,模拟哺乳动物细胞表面的 Sia,并可与宿主 Sia 结合蛋白相互作用,颠覆免疫清除机制。我们之前的工作表明,GBS 部分 O-乙酰化 CPS Sia 残基,并采用细胞内 O-乙酰化/去-O-乙酰化循环来控制这种表面 Sia 修饰的最终水平。在这里,我们研究了 NeuD O-乙酰转移酶和 NeuA O-乙酰酯酶点突变对 GBS 特定糖基化表型的影响,确定了一对同基因菌株,它们在 O-乙酰化修饰的程度(80%与 5%)上存在显著差异,而总的 Sia 表达水平仍相当。使用这些菌株,发现较高水平的 O-乙酰化可保护 GBS CPS Sia 免受微生物唾液酸酶的酶切去除,并阻碍人 Siglec-9 的结合,但不会显著改变 GBS 限制其表面补体 C3b 沉积的能力。进一步的实验表明,pH 诱导的 O-乙酰化修饰从 7-位到 9-位的迁移对 GBS-Siglec-9 相互作用有很大影响,7-O-乙酰化表现出最强的干扰。这些研究表明,GBS 的 O-乙酰化修饰的程度和位置都影响与宿主-病原体关系相关的 Sia 特异性相互作用。我们得出结论,天然 GBS 可能表达一种中等程度的 Sia O-乙酰化表型,以在宿主环境中存在的竞争选择压力之间取得平衡。