Suppr超能文献

MetaPocket:一种改进蛋白质配体结合位点预测的元方法。

MetaPocket: a meta approach to improve protein ligand binding site prediction.

作者信息

Huang Bingding

机构信息

EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118, Heidelberg, Germany.

出版信息

OMICS. 2009 Aug;13(4):325-30. doi: 10.1089/omi.2009.0045.

Abstract

The identification of ligand-binding sites is often the starting point for protein function annotation and structure-based drug design. Many computational methods for the prediction of ligand-binding sites have been developed in recent decades. Here we present a consensus method metaPocket, in which the predicted sites from four methods: LIGSITE(cs), PASS, Q-SiteFinder, and SURFNET are combined together to improve the prediction success rate. All these methods are evaluated on two datasets of 48 unbound/bound structures and 210 bound structures. The comparison results show that metaPocket improves the success rate from approximately 70 to 75% at the top 1 prediction. MetaPocket is available at http://metapocket.eml.org .

摘要

配体结合位点的识别通常是蛋白质功能注释和基于结构的药物设计的起点。近几十年来,已经开发了许多用于预测配体结合位点的计算方法。在这里,我们提出了一种共识方法metaPocket,其中来自四种方法(LIGSITE(cs)、PASS、Q-SiteFinder和SURFNET)的预测位点被组合在一起,以提高预测成功率。所有这些方法都在两个数据集上进行了评估,一个数据集包含48个未结合/结合结构,另一个数据集包含210个结合结构。比较结果表明,metaPocket在排名第一的预测中将成功率从大约70%提高到了75%。可通过http://metapocket.eml.org获取metaPocket。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验