Suppr超能文献

基于两步函数模型预测花粉浓度。

Forecasting pollen concentration by a two-step functional model.

作者信息

Valderrama Mariano J, Ocaña Francisco A, Aguilera Ana M, Ocaña-Peinado Francisco M

机构信息

Department of Statistics, University of Granada, 18071-Granada, Spain.

出版信息

Biometrics. 2010 Jun;66(2):578-85. doi: 10.1111/j.1541-0420.2009.01293.x. Epub 2009 Jul 23.

Abstract

A functional regression model to forecast the cypress pollen concentration during a given time interval, considering the air temperature in a previous interval as the input, is derived by means of a two-step procedure. This estimation is carried out by functional principal component (FPC) analysis and the residual noise is also modeled by FPC regression, taking as the explicative process the pollen concentration during the earlier interval. The prediction performance is then tested on pollen data series recorded in Granada (Spain) over a period of 10 years.

摘要

通过两步法推导了一个功能回归模型,该模型以先前时间间隔内的气温作为输入,来预测给定时间间隔内的柏树花粉浓度。这种估计通过功能主成分(FPC)分析来进行,并且残差噪声也通过FPC回归进行建模,将早期时间间隔内的花粉浓度作为解释过程。然后,利用西班牙格拉纳达记录的10年花粉数据系列对预测性能进行了测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验