Suppr超能文献

控制多维方向决策中的错误发现,并应用于有序类别上的基因表达数据。

Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories.

作者信息

Guo Wenge, Sarkar Sanat K, Peddada Shyamal D

机构信息

Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.

出版信息

Biometrics. 2010 Jun;66(2):485-92. doi: 10.1111/j.1541-0420.2009.01292.x. Epub 2009 Jul 23.

Abstract

Microarray gene expression studies over ordered categories are routinely conducted to gain insights into biological functions of genes and the underlying biological processes. Some common experiments are time-course/dose-response experiments where a tissue or cell line is exposed to different doses and/or durations of time to a chemical. A goal of such studies is to identify gene expression patterns/profiles over the ordered categories. This problem can be formulated as a multiple testing problem where for each gene the null hypothesis of no difference between the successive mean gene expressions is tested and further directional decisions are made if it is rejected. Much of the existing multiple testing procedures are devised for controlling the usual false discovery rate (FDR) rather than the mixed directional FDR (mdFDR), the expected proportion of Type I and directional errors among all rejections. Benjamini and Yekutieli (2005, Journal of the American Statistical Association 100, 71-93) proved that an augmentation of the usual Benjamini-Hochberg (BH) procedure can control the mdFDR while testing simple null hypotheses against two-sided alternatives in terms of one-dimensional parameters. In this article, we consider the problem of controlling the mdFDR involving multidimensional parameters. To deal with this problem, we develop a procedure extending that of Benjamini and Yekutieli based on the Bonferroni test for each gene. A proof is given for its mdFDR control when the underlying test statistics are independent across the genes. The results of a simulation study evaluating its performance under independence as well as under dependence of the underlying test statistics across the genes relative to other relevant procedures are reported. Finally, the proposed methodology is applied to a time-course microarray data obtained by Lobenhofer et al. (2002, Molecular Endocrinology 16, 1215-1229). We identified several important cell-cycle genes, such as DNA replication/repair gene MCM4 and replication factor subunit C2, which were not identified by the previous analyses of the same data by Lobenhofer et al. (2002) and Peddada et al. (2003, Bioinformatics 19, 834-841). Although some of our findings overlap with previous findings, we identify several other genes that complement the results of Lobenhofer et al. (2002).

摘要

针对有序类别进行的微阵列基因表达研究经常开展,以深入了解基因的生物学功能及潜在的生物学过程。一些常见实验是时间进程/剂量反应实验,即让组织或细胞系接触不同剂量和/或不同时长的化学物质。此类研究的一个目标是识别有序类别上的基因表达模式/特征。这个问题可被表述为一个多重检验问题,即对于每个基因,检验连续平均基因表达之间无差异的原假设,若被拒绝则进一步做出方向性决策。现有的许多多重检验程序是为控制通常的错误发现率(FDR)而设计的,而非混合方向性错误发现率(mdFDR),即在所有拒绝中I型错误和方向性错误的预期比例。本雅明尼和耶库蒂利(2005年,《美国统计协会杂志》100卷,71 - 93页)证明,在针对一维参数检验简单原假设与双侧备择假设时,对通常的本雅明尼 - 霍赫伯格(BH)程序进行扩充可控制mdFDR。在本文中,我们考虑控制涉及多维参数的mdFDR问题。为解决此问题,我们基于对每个基因的邦费罗尼检验,开发了一种扩展本雅明尼和耶库蒂利程序的方法。当基础检验统计量在各基因间相互独立时,给出了其控制mdFDR的证明。报告了一项模拟研究的结果,该研究评估了其在基础检验统计量独立以及各基因间相关情况下相对于其他相关程序的性能。最后,将所提出的方法应用于洛本霍费尔等人(2002年,《分子内分泌学》16卷,1215 - 1229页)获得的时间进程微阵列数据。我们识别出了几个重要的细胞周期基因,如DNA复制/修复基因MCM4和复制因子亚基C2,这些基因在洛本霍费尔等人(2002年)以及佩达达等人(2003年,《生物信息学》19卷,834 - 841页)对同一数据的先前分析中未被识别。尽管我们的一些发现与先前的发现有重叠,但我们还识别出了其他几个补充了洛本霍费尔等人(2002年)结果的基因。

相似文献

1
3
Effects of dependence in high-dimensional multiple testing problems.
BMC Bioinformatics. 2008 Feb 25;9:114. doi: 10.1186/1471-2105-9-114.
4
Mixed directional false discovery rate control in multiple pairwise comparisons using weighted p-values.
Biom J. 2015 Jan;57(1):144-58. doi: 10.1002/bimj.201300242. Epub 2014 Nov 20.
5
An adaptive single-step FDR procedure with applications to DNA microarray analysis.
Biom J. 2007 Feb;49(1):127-35. doi: 10.1002/bimj.200610316.
7
Testing multiple hypotheses with skewed alternatives.
Biometrics. 2016 Jun;72(2):494-502. doi: 10.1111/biom.12430. Epub 2015 Nov 4.
8
Estimation of the proportion of true null hypotheses under sparse dependence: Adaptive FDR controlling in microarray data.
Stat Methods Med Res. 2022 May;31(5):917-927. doi: 10.1177/09622802221074164. Epub 2022 Feb 8.
9
Identifying differentially expressed genes using false discovery rate controlling procedures.
Bioinformatics. 2003 Feb 12;19(3):368-75. doi: 10.1093/bioinformatics/btf877.

引用本文的文献

1
Underscoring long-term host-microbiome interactions in a physiologically relevant gingival tissue model.
NPJ Biofilms Microbiomes. 2025 Jan 9;11(1):9. doi: 10.1038/s41522-024-00641-2.
2
Multigroup analysis of compositions of microbiomes with covariate adjustments and repeated measures.
Nat Methods. 2024 Jan;21(1):83-91. doi: 10.1038/s41592-023-02092-7. Epub 2023 Dec 29.
3
Multi-group Analysis of Compositions of Microbiomes with Covariate Adjustments and Repeated Measures.
Res Sq. 2023 May 2:rs.3.rs-2778207. doi: 10.21203/rs.3.rs-2778207/v1.
4
Bayesian estimation of cell type-specific gene expression with prior derived from single-cell data.
Genome Res. 2021 Oct;31(10):1807-1818. doi: 10.1101/gr.268722.120. Epub 2021 Apr 9.
6
Intermittent Hypoxia and Hypercapnia Reproducibly Change the Gut Microbiome and Metabolome across Rodent Model Systems.
mSystems. 2019 Apr 30;4(2). doi: 10.1128/mSystems.00058-19. eCollection 2019 Mar-Apr.
8
American Gut: an Open Platform for Citizen Science Microbiome Research.
mSystems. 2018 May 15;3(3). doi: 10.1128/mSystems.00031-18. eCollection 2018 May-Jun.
9
Analysis of Microbiome Data in the Presence of Excess Zeros.
Front Microbiol. 2017 Nov 7;8:2114. doi: 10.3389/fmicb.2017.02114. eCollection 2017.
10
A communal catalogue reveals Earth's multiscale microbial diversity.
Nature. 2017 Nov 23;551(7681):457-463. doi: 10.1038/nature24621. Epub 2017 Nov 1.

本文引用的文献

1
Tail posterior probability for inference in pairwise and multiclass gene expression data.
Biometrics. 2007 Dec;63(4):1117-25. doi: 10.1111/j.1541-0420.2007.00807.x.
3
Gene-expression profile changes correlated with tumor progression and lymph node metastasis in esophageal cancer.
Clin Cancer Res. 2004 Jun 1;10(11):3629-38. doi: 10.1158/1078-0432.CCR-04-0048.
5
Multiplicity, directional (type III) errors, and the null hypothesis.
Psychol Methods. 2002 Sep;7(3):356-69. doi: 10.1037/1082-989x.7.3.356.
6
Regulation of DNA replication fork genes by 17beta-estradiol.
Mol Endocrinol. 2002 Jun;16(6):1215-29. doi: 10.1210/mend.16.6.0858.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验