Suppr超能文献

静态电场中一维周期系统的极化:锯齿形势处理的再探讨

Polarization of one-dimensional periodic systems in a static electric field: sawtooth potential treatment revisited.

作者信息

Kirtman Bernard, Ferrero Mauro, Rérat Michel, Springborg Michael

机构信息

Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.

出版信息

J Chem Phys. 2009 Jul 28;131(4):044109. doi: 10.1063/1.3185727.

Abstract

Various periodic piecewise linear potentials for extracting the electronic response of an infinite periodic system to a uniform electrostatic field are examined. It is shown that discontinuous potentials, such as the sawtooth, cannot be used for this purpose. Continuous triangular potentials can be successfully employed to determine both even- and odd-order (hyper)polarizabilities, as demonstrated here for the first time, although the permanent dipole moment of the corresponding long finite chain remains out of reach. Moreover, for typical highly polarizable organic systems, the size of the repeated unit has to be much larger than that of the finite system in order to obtain convergence with respect to system size. All results are illustrated both through extensive model calculations and through ab initio calculations on poly- and oligoacetylenes.

摘要

研究了用于提取无限周期系统对均匀静电场的电子响应的各种周期性分段线性势。结果表明,不连续的势,如锯齿形势,不能用于此目的。连续的三角形势可成功用于确定偶数阶和奇数阶(超)极化率,这在此处首次得到证明,尽管相应长有限链的永久偶极矩仍无法确定。此外,对于典型的高极化有机系统,重复单元的尺寸必须比有限系统的尺寸大得多,以便在系统尺寸方面获得收敛。所有结果都通过广泛的模型计算以及对聚乙炔和低聚乙炔的从头算计算进行了说明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验