Suppr超能文献

非对易平面中粒子的路径积分作用量。

Path-integral action of a particle in the noncommutative plane.

作者信息

Gangopadhyay Sunandan, Scholtz Frederik G

机构信息

National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa.

出版信息

Phys Rev Lett. 2009 Jun 19;102(24):241602. doi: 10.1103/PhysRevLett.102.241602. Epub 2009 Jun 18.

Abstract

Noncommutative quantum mechanics can be viewed as a quantum system represented in the space of Hilbert-Schmidt operators acting on noncommutative configuration space. Taking this as a departure point, we formulate a coherent state approach to the path-integral representation of the transition amplitude. From this we derive an action for a particle moving in the noncommutative plane and in the presence of an arbitrary potential. We find that this action is nonlocal in time. However, this nonlocality can be removed by introducing an auxilary field, which leads to a second class constrained system that yields the noncommutative Heisenberg algebra upon quantization. Using this action, the propagator of the free particle and harmonic oscillator are computed explicitly.

摘要

非对易量子力学可以被视为一个在作用于非对易位形空间的希尔伯特-施密特算子空间中表示的量子系统。以此为出发点,我们为跃迁振幅的路径积分表示制定了一种相干态方法。由此我们推导出了一个在非对易平面中运动且存在任意势场的粒子的作用量。我们发现这个作用量在时间上是非局域的。然而,通过引入一个辅助场可以消除这种非局域性,这会导致一个二类约束系统,在量子化时会产生非对易海森堡代数。利用这个作用量,明确计算了自由粒子和谐振子的传播子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验