Gangopadhyay Sunandan, Scholtz Frederik G
National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa.
Phys Rev Lett. 2009 Jun 19;102(24):241602. doi: 10.1103/PhysRevLett.102.241602. Epub 2009 Jun 18.
Noncommutative quantum mechanics can be viewed as a quantum system represented in the space of Hilbert-Schmidt operators acting on noncommutative configuration space. Taking this as a departure point, we formulate a coherent state approach to the path-integral representation of the transition amplitude. From this we derive an action for a particle moving in the noncommutative plane and in the presence of an arbitrary potential. We find that this action is nonlocal in time. However, this nonlocality can be removed by introducing an auxilary field, which leads to a second class constrained system that yields the noncommutative Heisenberg algebra upon quantization. Using this action, the propagator of the free particle and harmonic oscillator are computed explicitly.
非对易量子力学可以被视为一个在作用于非对易位形空间的希尔伯特-施密特算子空间中表示的量子系统。以此为出发点,我们为跃迁振幅的路径积分表示制定了一种相干态方法。由此我们推导出了一个在非对易平面中运动且存在任意势场的粒子的作用量。我们发现这个作用量在时间上是非局域的。然而,通过引入一个辅助场可以消除这种非局域性,这会导致一个二类约束系统,在量子化时会产生非对易海森堡代数。利用这个作用量,明确计算了自由粒子和谐振子的传播子。