Suppr超能文献

声门振动组织液体积聚:基于流固饱和多孔固体理论的简化模型。

Liquid accumulation in vibrating vocal fold tissue: a simplified model based on a fluid-saturated porous solid theory.

机构信息

Department of Surgery, Division of Otolaryngology Head and Neck Surgery, University of Wisconsin Medical School, Madison, Wisconsin 53792-7375, USA.

出版信息

J Voice. 2010 May;24(3):260-9. doi: 10.1016/j.jvoice.2008.09.005. Epub 2009 Aug 5.

Abstract

The human vocal fold is treated as a continuous, transversally isotropic, porous solid saturated with liquid. A set of mathematical equations, based on the theory of fluid-saturated porous solids, is developed to formulate the vibration of the vocal fold tissue. As the fluid-saturated porous tissue model degenerates to the continuous elastic tissue model when the relative movement of liquid in the porous tissue is ignored, it can be considered a more general description of vocal fold tissue than the continuous, elastic model. Using the fluid-saturated porous tissue model, the vibration of a bunch of one-dimensional fibers in the vocal fold is analytically solved based on the small-amplitude assumption. It is found that the vibration of the tissue will lead to the accumulation of excess liquid in the midmembranous vocal fold. The degree of liquid accumulation is positively proportional to the vibratory amplitude and frequency. The correspondence between the liquid distribution predicted by the porous tissue theory and the location of vocal nodules observed in clinical practice, provides theoretical evidence for the liquid accumulation hypothesis of vocal nodule formation (Jiang, Ph.D., dissertation, 1991, University of Iowa).

摘要

人声带被视为充满液体的连续、横向各向同性、多孔固体。建立了一组基于流固两相多孔固体理论的数学方程来描述声带组织的振动。由于当忽略多孔组织中液体的相对运动时,流体饱和多孔组织模型退化到连续弹性组织模型,因此它可以被认为是比连续弹性模型更一般的声带组织描述。利用流体饱和多孔组织模型,基于小振幅假设,对声带中一束一维纤维的振动进行了分析求解。研究发现,组织的振动会导致中膜声带中多余液体的积聚。液体积累的程度与振动幅度和频率成正比。多孔组织理论预测的液体分布与临床观察到的声带小结位置之间的对应关系,为声带小结形成的液体积累假说提供了理论依据(Jiang,博士论文,1991 年,爱荷华大学)。

相似文献

1
Liquid accumulation in vibrating vocal fold tissue: a simplified model based on a fluid-saturated porous solid theory.
J Voice. 2010 May;24(3):260-9. doi: 10.1016/j.jvoice.2008.09.005. Epub 2009 Aug 5.
2
Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.
J Acoust Soc Am. 2011 Feb;129(2):934-43. doi: 10.1121/1.3533692.
3
A fluid-saturated poroelastic model of the vocal folds with hydrated tissue.
J Biomech. 2009 Apr 16;42(6):774-80. doi: 10.1016/j.jbiomech.2008.12.006. Epub 2009 Mar 5.
4
Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
J Voice. 2015 May;29(3):265-72. doi: 10.1016/j.jvoice.2014.08.010. Epub 2015 Jan 22.
6
Vocal nodules and edema may be due to vibration-induced rises in capillary pressure.
Laryngoscope. 2008 Apr;118(4):748-52. doi: 10.1097/MLG.0b013e31815fdeee.
7
Gradation of stiffness of the mucosa inferior to the vocal fold.
J Voice. 2010 May;24(3):359-62. doi: 10.1016/j.jvoice.2008.09.009. Epub 2009 Mar 20.
8
An automatic method to quantify mucosal waves via videokymography.
Laryngoscope. 2008 Aug;118(8):1504-10. doi: 10.1097/MLG.0b013e318177096f.
9
Fluid-Structure Interaction Analysis of Aerodynamic and Elasticity Forces During Vocal Fold Vibration.
J Voice. 2025 Mar;39(2):293-303. doi: 10.1016/j.jvoice.2022.08.030. Epub 2022 Sep 28.
10
Hypothesis of whiplike motion as a possible traumatizing mechanism in vocal fold vibration.
Folia Phoniatr Logop. 2003 Jul-Aug;55(4):189-98. doi: 10.1159/000071018.

引用本文的文献

1
6
Mechanics of human voice production and control.
J Acoust Soc Am. 2016 Oct;140(4):2614. doi: 10.1121/1.4964509.
7
Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
J Voice. 2015 May;29(3):265-72. doi: 10.1016/j.jvoice.2014.08.010. Epub 2015 Jan 22.
8
Permeability of canine vocal fold lamina propria.
Laryngoscope. 2015 Apr;125(4):941-5. doi: 10.1002/lary.25067. Epub 2014 Dec 10.
9
A fluid-saturated poroelastic model of the vocal folds with hydrated tissue.
J Biomech. 2009 Apr 16;42(6):774-80. doi: 10.1016/j.jbiomech.2008.12.006. Epub 2009 Mar 5.

本文引用的文献

1
Vocal nodules and edema may be due to vibration-induced rises in capillary pressure.
Laryngoscope. 2008 Apr;118(4):748-52. doi: 10.1097/MLG.0b013e31815fdeee.
2
Anterior-posterior biphonation in a finite element model of vocal fold vibration.
J Acoust Soc Am. 2006 Sep;120(3):1570-7. doi: 10.1121/1.2221546.
3
Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
J Acoust Soc Am. 2006 Jun;119(6):3987-94. doi: 10.1121/1.2197798.
5
Anatomy and physiology of the larynx.
Otolaryngol Clin North Am. 2006 Feb;39(1):1-10. doi: 10.1016/j.otc.2005.10.004.
6
Spatiotemporal chaos in excised larynx vibrations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):035201. doi: 10.1103/PhysRevE.72.035201. Epub 2005 Sep 22.
7
Medial surface dynamics of an in vivo canine vocal fold during phonation.
J Acoust Soc Am. 2005 May;117(5):3174-83. doi: 10.1121/1.1871772.
8
Modeling mechanical stresses as a factor in the etiology of benign vocal fold lesions.
J Biomech. 2004 Jul;37(7):1119-24. doi: 10.1016/j.jbiomech.2003.11.007.
9
A three-dimensional model of vocal fold abduction/adduction.
J Acoust Soc Am. 2004 Apr;115(4):1747-59. doi: 10.1121/1.1652033.
10
Vocal nodules and polyps: laryngeal tissue reaction to habitual hyperkinetic dysphonia.
J Speech Hear Disord. 1962 Aug;27:205-17. doi: 10.1044/jshd.2703.205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验