Suppr超能文献

机器人编队的神经网络输出反馈控制

Neural network output feedback control of robot formations.

作者信息

Dierks Travis, Jagannathan Sarangapani

机构信息

Department of Electrical and Computer Engineering, Missouri University of Science and Technology (formerly University of Missouri-Rolla), Rolla, MO 65409, USA.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2010 Apr;40(2):383-99. doi: 10.1109/TSMCB.2009.2025508. Epub 2009 Aug 4.

Abstract

In this paper, a combined kinematic/torque output feedback control law is developed for leader-follower-based formation control using backstepping to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers. A neural network (NN) is introduced to approximate the dynamics of the follower and its leader using online weight tuning. Furthermore, a novel NN observer is designed to estimate the linear and angular velocities of both the follower robot and its leader. It is shown, by using the Lyapunov theory, that the errors for the entire formation are uniformly ultimately bounded while relaxing the separation principle. In addition, the stability of the formation in the presence of obstacles, is examined using Lyapunov methods, and by treating other robots in the formation as obstacles, collisions within the formation are prevented. Numerical results are provided to verify the theoretical conjectures.

摘要

在本文中,针对基于领导者 - 跟随者的编队控制,开发了一种运动学/扭矩输出反馈组合控制律,该控制律采用反步法来适应机器人动力学和编队情况,这与基于运动学的编队控制器形成对比。引入神经网络(NN)通过在线权重调整来逼近跟随者及其领导者的动力学。此外,设计了一种新颖的神经网络观测器来估计跟随机器人及其领导者的线速度和角速度。利用李雅普诺夫理论表明,在放宽分离原理的情况下,整个编队的误差是一致最终有界的。另外,使用李雅普诺夫方法研究了存在障碍物时编队的稳定性,并且通过将编队中的其他机器人视为障碍物,防止了编队内部的碰撞。提供了数值结果以验证理论推测。

相似文献

1
Neural network output feedback control of robot formations.
IEEE Trans Syst Man Cybern B Cybern. 2010 Apr;40(2):383-99. doi: 10.1109/TSMCB.2009.2025508. Epub 2009 Aug 4.
2
Neural network control of mobile robot formations using RISE feedback.
IEEE Trans Syst Man Cybern B Cybern. 2009 Apr;39(2):332-47. doi: 10.1109/TSMCB.2008.2005122. Epub 2008 Dec 16.
3
Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
IEEE Trans Syst Man Cybern B Cybern. 2008 Oct;38(5):1326-46. doi: 10.1109/TSMCB.2008.925749.
4
Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.
IEEE Trans Neural Netw. 2008 Oct;19(10):1712-26. doi: 10.1109/TNN.2008.2001266.
5
Output feedback control of a quadrotor UAV using neural networks.
IEEE Trans Neural Netw. 2010 Jan;21(1):50-66. doi: 10.1109/TNN.2009.2034145. Epub 2009 Dec 4.
6
Dynamical network interactions in distributed control of robots.
Chaos. 2006 Mar;16(1):015116. doi: 10.1063/1.2166492.
7
Dual adaptive dynamic control of mobile robots using neural networks.
IEEE Trans Syst Man Cybern B Cybern. 2009 Feb;39(1):129-41. doi: 10.1109/TSMCB.2008.2002851.
8
Decentralized output-feedback neural control for systems with unknown interconnections.
IEEE Trans Syst Man Cybern B Cybern. 2008 Feb;38(1):258-66. doi: 10.1109/TSMCB.2007.904544.
9
Adaptive NN output-feedback stabilization for a class of stochastic nonlinear strict-feedback systems.
ISA Trans. 2009 Oct;48(4):468-75. doi: 10.1016/j.isatra.2009.05.004. Epub 2009 Jun 26.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验