Yoo Sung Jin, Park Jin Bae, Choi Yoon Ho
Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea.
IEEE Trans Neural Netw. 2008 Oct;19(10):1712-26. doi: 10.1109/TNN.2008.2001266.
In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.
在本文中,我们通过观测器动态表面设计技术,为柔性关节电动(FJED)机器人提出了一种新的鲁棒输出反馈控制方法。所提出的方法仅需要FJED机器人的位置测量值。为了估计具有模型不确定性的FJED机器人的连杆和执行器速度信息,我们使用自递归小波神经网络(SRWNN)开发了一种自适应观测器。SRWNN用于逼近机器人(连杆)动力学和执行器动力学中的模型不确定性,并且其所有权重都在线训练。基于所设计的观测器,利用动态表面设计过程推导了使用估计状态的连杆位置跟踪控制器。因此,所提出的控制器比观测器反推控制器设计得更简单。通过李雅普诺夫稳定性分析表明,闭环自适应系统中的所有信号都是一致最终有界的。最后,给出了在三连杆FJED机器人上的仿真结果,以验证所提出控制系统在负载不确定性和外部干扰情况下良好的位置跟踪性能和鲁棒性。