Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
Pharmacogenomics. 2009 Aug;10(8):1257-66. doi: 10.2217/pgs.09.65.
To develop a novel warfarin-dosing algorithm based on a previous population pharmacokinetic/pharmacodynamic (PK/PD) model with Bayesian forecasting to facilitate warfarin therapy.
MATERIALS & METHODS: Using information on CYP2C9 and VKORC1 genotypes, S-warfarin level, dose and international normalized ratio (INR) of prothrombin time, individual PK (apparent clearance of S-warfarin [CLs]) and PD (concentration resulting in 50% of E(max) [EC(50)]) parameters were determined by Bayesian forecasting for 45 Japanese patients. Maintenance doses were described by multiple linear regression using individually estimated PK/PD parameters and INR values. The validity of the model and a comparison with other dosing methods were evaluated by bootstrap resampling and a cross-validation method.
The plasma concentration of S-warfarin and INR were accurately predicted from individual PK/PD parameters. The following final regression model for maintenance dose was obtained; maintenance dose = 11.2 x CLs + 0.91 x EC(50) + 2.36 x INR - 9.67, giving a strong correlation between actual and predicted maintenance doses (r(2) = 0.944). Bootstrap resampling and cross-validation showed robustness and a superior predictive performance compared with other dosing methods. On the other hand, the predictability without actual measurements (S-warfarin and INR values) and Bayesian inference was comparable to other dosing methods.
A novel algorithm, based on the population PK/PD model combined with Bayesian forecasting, gave precise predictions of maintenance dose, leading to individualized warfarin therapy.
开发一种新的华法林剂量算法,该算法基于先前的群体药代动力学/药效动力学(PK/PD)模型,并结合贝叶斯预测,以促进华法林治疗。
利用 CYP2C9 和 VKORC1 基因型、S-华法林水平、剂量和国际标准化比值(INR)的信息,通过贝叶斯预测确定 45 例日本患者的个体 PK(S-华法林的表观清除率[CLs])和 PD(达到 E(max)的 50%的浓度[EC(50)])参数。使用个体估计的 PK/PD 参数和 INR 值,通过多元线性回归描述维持剂量。通过自举重采样和交叉验证方法评估模型的有效性和与其他剂量方法的比较。
从个体 PK/PD 参数准确预测 S-华法林和 INR 的血浆浓度。获得了以下最终维持剂量回归模型:维持剂量=11.2xCLs+0.91xEC(50)+2.36xINR-9.67,实际和预测维持剂量之间具有很强的相关性(r(2)=0.944)。自举重采样和交叉验证显示,与其他剂量方法相比,该模型具有更强的稳健性和预测性能。另一方面,在没有实际测量(S-华法林和 INR 值)和贝叶斯推断的情况下,其预测能力与其他剂量方法相当。
一种新的算法,基于群体 PK/PD 模型结合贝叶斯预测,可以精确预测维持剂量,从而实现个体化华法林治疗。