Saffian Shamin M, Wright Daniel F B, Roberts Rebecca L, Duffull Stephen B
*School of Pharmacy, University of Otago, Dunedin, New Zealand; †Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur; and ‡Department of Surgical Sciences, University of Otago, Dunedin, New Zealand.
Ther Drug Monit. 2015 Aug;37(4):531-8. doi: 10.1097/FTD.0000000000000177.
The aim of this study was to compare the predictive performance of different warfarin dosing methods.
Data from 46 patients who were initiating warfarin therapy were available for analysis. Nine recently published dosing tools including 8 dose prediction algorithms and a Bayesian forecasting method were compared with each other in terms of their ability to predict the actual maintenance dose. The dosing tools included 4 algorithms that were based on patient characteristics (2 clinical and 2 genotype-driven algorithms), 4 algorithms based on international normalized ratio (INR) response feedback and patient characteristics (2 clinical and 2 genotype-driven algorithms), and a Bayesian forecasting method. Comparisons were conducted using measures of bias (mean prediction error) and imprecision [root mean square error (RMSE)].
The 2 genotype-driven INR feedback algorithms by Horne et al and Lenzini et al produced more precise maintenance dose predictions (RMSE, 1.16 and 1.19 mg/d, respectively; P < 0.05) than the genotype-driven algorithms by Gage et al and Klein et al and the Bayesian method (RMSE, 1.60, 1.62, and 1.81 mg/d respectively). The dose predictions from clinical and genotype-driven algorithms by Gage et al, Klein et al, and Horne et al were all negatively biased. Only the INR feedback algorithms (clinical and genotype) by Lenzini et al produced unbiased dose predictions. The Bayesian method produced unbiased dose predictions overall (mean prediction error, +0.37 mg/d; 95% confidence interval, 0.89 to -0.15) but overpredicted doses in patients requiring >8 mg/d.
Overall, warfarin dosing methods that included some measure of INR response (INR feedback algorithms and Bayesian methods) produced unbiased and more precise dose predictions. The Bayesian forecasting method produced positively biased dose predictions in patients who required doses >8 mg/d. Further research to assess differences in clinical endpoints when warfarin doses are predicted using Bayesian or INR-driven algorithms is warranted.
本研究的目的是比较不同华法林给药方法的预测性能。
有46例开始接受华法林治疗的患者的数据可供分析。将9种最近发表的给药工具,包括8种剂量预测算法和1种贝叶斯预测方法,在预测实际维持剂量的能力方面进行相互比较。这些给药工具包括4种基于患者特征的算法(2种临床算法和2种基因型驱动算法)、4种基于国际标准化比值(INR)反应反馈和患者特征的算法(2种临床算法和2种基因型驱动算法),以及1种贝叶斯预测方法。使用偏差(平均预测误差)和不精密度[均方根误差(RMSE)]指标进行比较。
Horne等人和Lenzini等人的2种基因型驱动的INR反馈算法比Gage等人、Klein等人的基因型驱动算法以及贝叶斯方法产生了更精确的维持剂量预测(RMSE分别为1.16和1.19mg/d;P<0.05),后三者的RMSE分别为1.60、1.62和1.81mg/d。Gage等人、Klein等人和Horne等人的临床和基因型驱动算法的剂量预测均存在负偏差。只有Lenzini等人的INR反馈算法(临床和基因型)产生了无偏差的剂量预测。贝叶斯方法总体上产生了无偏差的剂量预测(平均预测误差为+0.37mg/d;95%置信区间为0.89至-0.15),但在需要>8mg/d剂量的患者中高估了剂量。
总体而言,包括某种INR反应测量方法的华法林给药方法(INR反馈算法和贝叶斯方法)产生了无偏差且更精确的剂量预测。贝叶斯预测方法在需要剂量>8mg/d的患者中产生了正偏差的剂量预测。有必要进一步研究评估使用贝叶斯或INR驱动算法预测华法林剂量时临床终点的差异。