Suppr超能文献

比较基因调控网络的不同 ODE 建模方法。

Comparing different ODE modelling approaches for gene regulatory networks.

机构信息

Department of Engineering Mathematics, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, UK.

出版信息

J Theor Biol. 2009 Dec 21;261(4):511-30. doi: 10.1016/j.jtbi.2009.07.040. Epub 2009 Aug 6.

Abstract

A fundamental step in synthetic biology and systems biology is to derive appropriate mathematical models for the purposes of analysis and design. For example, to synthesize a gene regulatory network, the derivation of a mathematical model is important in order to carry out in silico investigations of the network dynamics and to investigate parameter variations and robustness issues. Different mathematical frameworks have been proposed to derive such models. In particular, the use of sets of nonlinear ordinary differential equations (ODEs) has been proposed to model the dynamics of the concentrations of mRNAs and proteins. These models are usually characterized by the presence of highly nonlinear Hill function terms. A typical simplification is to reduce the number of equations by means of a quasi-steady-state assumption on the mRNA concentrations. This yields a class of simplified ODE models. A radically different approach is to replace the Hill functions by piecewise-linear approximations [Casey, R., de Jong, H., Gouze , J.-L., 2006. Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J. Math. Biol. 52 (1), 27-56]. A further modelling approach is the use of discrete-time maps [Coutinho, R., Fernandez, B., Lima, R., Meyroneinc, A., 2006. Discrete time piecewise affine models of genetic regulatory networks. J. Math. Biol. 52, 524-570] where the evolution of the system is modelled in discrete, rather than continuous, time. The aim of this paper is to discuss and compare these different modelling approaches, using a representative gene regulatory network. We will show that different models often lead to conflicting conclusions concerning the existence and stability of equilibria and stable oscillatory behaviours. Moreover, we shall discuss, where possible, the viability of making certain modelling approximations (e.g. quasi-steady-state mRNA dynamics or piecewise-linear approximations of Hill functions) and their effects on the overall system dynamics.

摘要

在合成生物学和系统生物学中,一个基本步骤是为了分析和设计的目的推导出适当的数学模型。例如,为了合成基因调控网络,推导出数学模型对于进行网络动力学的计算机研究以及研究参数变化和鲁棒性问题非常重要。已经提出了不同的数学框架来推导出这样的模型。特别是,使用一组非线性常微分方程(ODE)来建模 mRNA 和蛋白质浓度的动力学。这些模型通常的特点是存在高度非线性的 Hill 函数项。一种典型的简化方法是通过对 mRNA 浓度进行准稳态假设来减少方程的数量。这产生了一类简化的 ODE 模型。一种截然不同的方法是用分段线性近似代替 Hill 函数[Casey, R., de Jong, H., Gouze, J.-L., 2006. 遗传调控网络的分段线性模型:平衡点及其稳定性。J. Math. Biol. 52 (1), 27-56]。另一种建模方法是使用离散时间映射[Coutinho, R., Fernandez, B., Lima, R., Meyroneinc, A., 2006. 遗传调控网络的离散时间分段仿射模型。J. Math. Biol. 52, 524-570],其中系统的演化是在离散而不是连续时间中建模的。本文的目的是使用一个有代表性的基因调控网络来讨论和比较这些不同的建模方法。我们将表明,不同的模型通常会导致关于平衡点的存在性和稳定性以及稳定的振荡行为的相互矛盾的结论。此外,我们将讨论(在可能的情况下)进行某些建模近似(例如准稳态 mRNA 动力学或 Hill 函数的分段线性近似)的可行性及其对整个系统动力学的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验