Suppr超能文献

单细胞基因调控网络方法的基准测试方法

Approaches for Benchmarking Single-Cell Gene Regulatory Network Methods.

作者信息

Uzun Yasin

机构信息

Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA.

Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.

出版信息

Bioinform Biol Insights. 2024 Nov 4;18:11779322241287120. doi: 10.1177/11779322241287120. eCollection 2024.

Abstract

Gene regulatory networks are powerful tools for modeling genetic interactions that control the expression of genes driving cell differentiation, and single-cell sequencing offers a unique opportunity to build these networks with high-resolution genomic data. There are many proposed computational methods to build these networks using single-cell data, and different approaches are used to benchmark these methods. However, a comprehensive discussion specifically focusing on benchmarking approaches is missing. In this article, we lay the GRN terminology, present an overview of common gold-standard studies and data sets, and define the performance metrics for benchmarking network construction methodologies. We also point out the advantages and limitations of different benchmarking approaches, suggest alternative ground truth data sets that can be used for benchmarking, and specify additional considerations in this context.

摘要

基因调控网络是用于模拟控制驱动细胞分化的基因表达的遗传相互作用的强大工具,而单细胞测序为利用高分辨率基因组数据构建这些网络提供了独特的机会。有许多提出的使用单细胞数据构建这些网络的计算方法,并且使用不同的方法对这些方法进行基准测试。然而,缺少专门针对基准测试方法的全面讨论。在本文中,我们阐述了基因调控网络的术语,概述了常见的金标准研究和数据集,并定义了用于对网络构建方法进行基准测试的性能指标。我们还指出了不同基准测试方法的优点和局限性,建议了可用于基准测试的替代真实数据集,并指定了在此背景下的其他注意事项。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3075/11536393/03a611928224/10.1177_11779322241287120-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验