Suppr超能文献

冲击产生的熔体中瓦兹利石的超快生长及其对早期太阳系撞击过程的影响。

Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes.

作者信息

Tschauner Oliver, Asimow Paul D, Kostandova Natalya, Ahrens Thomas J, Ma Chi, Sinogeikin Stanislas, Liu Zhenxian, Fakra Sirine, Tamura Nobumichi

机构信息

High Pressure Science and Engineering Center, Department of Physics, University of Nevada, Las Vegas, NV 89154, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13691-5. doi: 10.1073/pnas.0905751106. Epub 2009 Aug 10.

Abstract

We observed micrometer-sized grains of wadsleyite, a high-pressure phase of (Mg,Fe)(2)SiO(4,) in the recovery products of a shock experiment. We infer these grains crystallized from shock-generated melt over a time interval of <1 micros, the maximum time over which our experiment reached and sustained pressure sufficient to stabilize this phase. This rapid crystal growth rate (approximately 1 m/s) suggests that, contrary to the conclusions of previous studies of the occurrence of high-pressure phases in shock-melt veins in strongly shocked meteorites, the growth of high-pressure phases from the melt during shock events is not diffusion-controlled. Another process, such as microturbulent transport, must be active in the crystal growth process. This result implies that the times necessary to crystallize the high-pressure phases in shocked meteorites may correspond to shock pressure durations achieved on impacts between objects 1-5 m in diameter and not, as previously inferred, approximately 1-5 km in diameter. These results may also provide another pathway for syntheses, via shock recovery, of some high-value, high-pressure phases.

摘要

我们在一次冲击实验的回收产物中观察到了微米级的瓦兹利石颗粒,瓦兹利石是(Mg,Fe)₂SiO₄的一种高压相。我们推断这些颗粒是在小于1微秒的时间间隔内从冲击产生的熔体中结晶出来的,这是我们的实验达到并维持足以使该相稳定的压力的最长时间。这种快速的晶体生长速率(约1米/秒)表明,与之前对强冲击陨石中冲击熔体脉中高压相出现情况的研究结论相反,冲击事件期间熔体中高压相的生长不受扩散控制。在晶体生长过程中,一定有另一个过程,比如微湍流输运,在起作用。这一结果意味着,在冲击陨石中使高压相结晶所需的时间可能对应于直径1 - 5米的物体之间撞击所达到的冲击压力持续时间,而不是像之前推断的那样约为直径1 - 5千米的物体之间撞击所达到的冲击压力持续时间。这些结果还可能为通过冲击回收合成一些高价值的高压相提供另一条途径。

相似文献

1
Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes.
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13691-5. doi: 10.1073/pnas.0905751106. Epub 2009 Aug 10.
2
Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins.
Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8542-7. doi: 10.1073/pnas.0801518105. Epub 2008 Jun 17.
3
Timescales of shock processes in chondritic and martian meteorites.
Nature. 2005 Jun 23;435(7045):1071-4. doi: 10.1038/nature03616.
4
Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite.
Sci Adv. 2016 Mar 25;2(3):e1501725. doi: 10.1126/sciadv.1501725. eCollection 2016 Mar.
5
An infrared spectral match between GEMS and interstellar grains.
Science. 1999 Sep 10;285(5434):1716-8. doi: 10.1126/science.285.5434.1716.
8
Are some chondrule rims formed by impact processes? Observations and experiments.
Icarus. 1991;91:76-92. doi: 10.1016/0019-1035(91)90127-f.
9
Dynamics of Ultrafast Phase Transitions in (001) Si on the Shock-Wave Front.
Int J Mol Sci. 2022 Feb 14;23(4):2115. doi: 10.3390/ijms23042115.
10
Low propagation loss silicon-on-sapphire waveguides for the mid-infrared.
Opt Express. 2011 Aug 1;19(16):15212-20. doi: 10.1364/OE.19.015212.

引用本文的文献

1
Unique evidence of fluid alteration in the Kakowa (L6) ordinary chondrite.
Sci Rep. 2022 Apr 12;12(1):5520. doi: 10.1038/s41598-022-09465-6.
3
Ultrafast olivine-ringwoodite transformation during shock compression.
Nat Commun. 2021 Jul 14;12(1):4305. doi: 10.1038/s41467-021-24633-4.
4
Accidental synthesis of a previously unknown quasicrystal in the first atomic bomb test.
Proc Natl Acad Sci U S A. 2021 Jun 1;118(22). doi: 10.1073/pnas.2101350118.
6
Shock synthesis of quasicrystals with implications for their origin in asteroid collisions.
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7077-81. doi: 10.1073/pnas.1600321113. Epub 2016 Jun 13.

本文引用的文献

1
Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins.
Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8542-7. doi: 10.1073/pnas.0801518105. Epub 2008 Jun 17.
2
Stishovite: Synthesis by Shock Wave.
Science. 1965 Jan 8;147(3654):144-5. doi: 10.1126/science.147.3654.144.
3
The Phase Boundary Between agr- and beta-Mg2SiO4 Determined by in Situ X-ray Observation.
Science. 1994 Aug 26;265(5176):1202-3. doi: 10.1126/science.265.5176.1202.
4
Pyroxene-garnet transformation in coorara meteorite.
Science. 1970 May 15;168(3933):832-3. doi: 10.1126/science.168.3933.832.
5
Timescales of shock processes in chondritic and martian meteorites.
Nature. 2005 Jun 23;435(7045):1071-4. doi: 10.1038/nature03616.
6
Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films.
J Synchrotron Radiat. 2003 Mar 1;10(Pt 2):137-43. doi: 10.1107/s0909049502021362. Epub 2003 Feb 27.
7
A monoclinic post-stishovite polymorph of silica in the shergotty meteorite.
Science. 2000 Jun 2;288(5471):1632-5. doi: 10.1126/science.288.5471.1632.
8
Natural NaAlSi(3)O(8)-hollandite in the shocked sixiangkou meteorite.
Science. 2000 Mar 3;287(5458):1633-6. doi: 10.1126/science.287.5458.1633.
9
A post-stishovite SiO2 polymorph in the meteorite Shergotty: implications for impact events.
Science. 1999 May 28;284(5419):1511-3. doi: 10.1126/science.284.5419.1511.
10
Natural (Mg,Fe)SiO3-ilmenite and -perovskite in the Tenham meteorite.
Science. 1997 Aug 22;277(5329):1084-6. doi: 10.1126/science.277.5329.1084.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验