Raijmakers Reinout, Heck Albert J R, Mohammed Shabaz
Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
Mol Biosyst. 2009 Sep;5(9):992-1003. doi: 10.1039/b901873e. Epub 2009 May 6.
Determining the relative abundances of proteins in biological systems is an important aspect of proteomics. Quantitation provides the possibility to unravel the often subtle molecular differences that regulate biological processes in cells and organisms. A common method to analyze differences in protein expression in complex samples is differential stable isotopic labeling combined with 2D-LC-MS separation. In such experiments, proteins or peptides from different samples are labeled with different stable isotopes and their relative amounts are determined from the peptide ion intensities using mass spectrometry. When human tissue samples are investigated, chemical stable isotope labeling strategies instead of metabolic labeling strategies are required. However, biological variation in protein expression between individuals is a key concern.Here we describe a method that allows for fully automated quantitative proteome analysis; involving desalting, triplex stable isotopic dimethyl labeling and multi-dimensional strong cation exchange/reversed phase separation of peptides prior to mass spectrometric analysis that can be applied to complex samples such as human tissue lysates. We highlight the usability of the method by characterizing the extent of biological variation between the proteomes of primary human leukocytes from three healthy donors. Using our method we were able to quantify 967 proteins with a minimum of 2 peptides, revealing very limited biological variation between the donors. The discovery is noteworthy considering the presence of significant endogenous protease activity, originating primarily from the enzyme neutrophil elastase. This dataset represents the largest quantitative dataset for human leukocytes proteins, which was made possible by the use of an automated labeling strategy.
确定生物系统中蛋白质的相对丰度是蛋白质组学的一个重要方面。定量分析为揭示调节细胞和生物体生物过程的通常细微的分子差异提供了可能。分析复杂样品中蛋白质表达差异的一种常用方法是差异稳定同位素标记结合二维液相色谱-质谱分离。在这类实验中,来自不同样品的蛋白质或肽段用不同的稳定同位素进行标记,并使用质谱法根据肽离子强度确定它们的相对含量。在研究人体组织样品时,需要采用化学稳定同位素标记策略而非代谢标记策略。然而,个体之间蛋白质表达的生物学差异是一个关键问题。在此,我们描述了一种可实现全自动定量蛋白质组分析的方法;该方法包括在质谱分析之前对肽段进行脱盐、三重稳定同位素二甲基标记以及多维强阳离子交换/反相分离,可应用于诸如人体组织裂解液等复杂样品。我们通过表征来自三名健康供体的原代人白细胞蛋白质组之间的生物学差异程度,突出了该方法的实用性。使用我们的方法,我们能够对至少含有两条肽段的967种蛋白质进行定量,揭示出供体之间非常有限的生物学差异。考虑到主要源自中性粒细胞弹性蛋白酶的显著内源性蛋白酶活性的存在,这一发现值得关注。该数据集代表了最大的人白细胞蛋白质定量数据集,这得益于使用了自动化标记策略才得以实现。