Suppr超能文献

利用酰肼化学、稳定同位素标记和质谱法鉴定和定量N-连接糖蛋白。

Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry.

作者信息

Zhang Hui, Li Xiao-Jun, Martin Daniel B, Aebersold Ruedi

机构信息

Institute for Systems Biology, 1441 N 34th Street, Seattle, Washington 98103-8904, USA.

出版信息

Nat Biotechnol. 2003 Jun;21(6):660-6. doi: 10.1038/nbt827. Epub 2003 May 18.

Abstract

Quantitative proteome profiling using stable isotope protein tagging and automated tandem mass spectrometry (MS/MS) is an emerging technology with great potential for the functional analysis of biological systems and for the detection of clinical diagnostic or prognostic marker proteins. Owing to the enormous complexity of proteomes, their comprehensive analysis is an as-yet-unresolved technical challenge. However, biologically or clinically important information can be obtained if specific, information-rich protein classes, or sub-proteomes, are isolated and analyzed. Glycosylation is the most common post-translational modification. Here we describe a method for the selective isolation, identification and quantification of peptides that contain N-linked carbohydrates. It is based on the conjugation of glycoproteins to a solid support using hydrazide chemistry, stable isotope labeling of glycopeptides and the specific release of formerly N-linked glycosylated peptides via peptide- N-glycosidase F (PNGase F). The recovered peptides are then identified and quantified by MS/MS. We applied the approach to the analysis of plasma membrane proteins and proteins contained in human blood serum.

摘要

使用稳定同位素蛋白质标记和自动串联质谱(MS/MS)进行定量蛋白质组分析是一项新兴技术,在生物系统功能分析以及临床诊断或预后标志物蛋白检测方面具有巨大潜力。由于蛋白质组极其复杂,对其进行全面分析仍是一项尚未解决的技术挑战。然而,如果分离并分析特定的、富含信息的蛋白质类别或亚蛋白质组,就可以获得生物学或临床上重要的信息。糖基化是最常见的翻译后修饰。在此,我们描述一种用于选择性分离、鉴定和定量含有N-连接碳水化合物的肽段的方法。该方法基于利用酰肼化学将糖蛋白与固相支持物偶联、糖肽的稳定同位素标记以及通过肽-N-糖苷酶F(PNGase F)特异性释放先前N-连接糖基化的肽段。然后通过MS/MS对回收的肽段进行鉴定和定量。我们将该方法应用于质膜蛋白和人血清中所含蛋白质的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验