文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单体细菌形式和二聚体线粒体形式的F1F0-ATP合酶旋转纳米马达的调控

Regulation of the F1F0-ATP synthase rotary nanomotor in its monomeric-bacterial and dimeric-mitochondrial forms.

作者信息

García-Trejo José J, Morales-Ríos Edgar

机构信息

Facultad de Química, Departamento de Biología, Lab. F-117, Universidad Nacional Autónoma de México, México, D.F., 04510, México.

出版信息

J Biol Phys. 2008 Apr;34(1-2):197-212. doi: 10.1007/s10867-008-9114-z. Epub 2008 Oct 4.


DOI:10.1007/s10867-008-9114-z
PMID:19669503
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2577739/
Abstract

The F(1)F(0)-adenosine triphosphate (ATP) synthase rotational motor synthesizes most of the ATP required for living from adenosine diphosphate, Pi, and a proton electrochemical gradient across energy-transducing membranes of bacteria, chloroplasts, and mitochondria. However, as a reversible nanomotor, it also hydrolyzes ATP during de-energized conditions in all energy-transducing systems. Thus, different subunits and mechanisms have emerged in nature to control the intrinsic rotation of the enzyme to favor the ATP synthase activity over its opposite and commonly wasteful ATPase turnover. Recent advances in the structural analysis of the bacterial and mitochondrial ATP synthases are summarized to review the distribution and mechanism of the subunits that are part of the central rotor and regulate its gyration. In eubacteria, the epsilon subunit works as a ratchet to favor the rotation of the central stalk in the ATP synthase direction by extending and contracting two alpha-helixes of its C-terminal side and also by binding ATP with low affinity in thermophilic bacteria. On the other hand, in bovine heart mitochondria, the so-called inhibitor protein (IF(1)) interferes with the intrinsic rotational mechanism of the central gamma subunit and with the opening and closing of the catalytic beta-subunits to inhibit its ATPase activity. Besides its inhibitory role, the IF(1) protein also promotes the dimerization of the bovine and rat mitochondrial enzymes, albeit it is not essential for dimerization of the yeast F(1)F(0) mitochondrial complex. High-resolution electron microscopy of the dimeric enzyme in its bovine and yeast forms shows a conical shape that is compatible with the role of the ATP synthase dimer in the formation of tubular the cristae membrane of mitochondria after further oligomerization. Dimerization of the mitochondrial ATP synthase diminishes the rotational drag of the central rotor that would decrease the coupling efficiency between rotation of the central stalk and ATP synthesis taking place at the F(1) portion. In addition, F(1)F(0) dimerization and its further oligomerization also increase the stability of the enzyme to natural or experimentally induced destabilizing conditions.

摘要

F(1)F(0)-三磷酸腺苷(ATP)合酶旋转马达利用二磷酸腺苷、磷酸以及细菌、叶绿体和线粒体能量转换膜上的质子电化学梯度合成生命所需的大部分ATP。然而,作为一种可逆的纳米马达,在所有能量转换系统的能量耗尽条件下,它也会水解ATP。因此,自然界中出现了不同的亚基和机制来控制该酶的固有旋转,以利于ATP合酶活性,而非其相反且通常浪费的ATP酶周转。本文总结了细菌和线粒体ATP合酶结构分析的最新进展,以综述作为中央转子一部分并调节其旋转的亚基的分布和机制。在真细菌中,ε亚基起到棘轮的作用,通过其C端的两个α螺旋的伸展和收缩,以及在嗜热细菌中以低亲和力结合ATP,来促进中央轴在ATP合酶方向上的旋转。另一方面,在牛心线粒体中,所谓的抑制蛋白(IF(1))干扰中央γ亚基的固有旋转机制以及催化β亚基的开闭,从而抑制其ATP酶活性。除了其抑制作用外,IF(1)蛋白还促进牛和大鼠线粒体酶的二聚化,尽管它对于酵母F(1)F(0)线粒体复合物的二聚化并非必需。牛和酵母形式的二聚体酶的高分辨率电子显微镜显示出一种圆锥形,这与ATP合酶二聚体在进一步寡聚化后在线粒体内嵴膜形成中的作用相符。线粒体ATP合酶的二聚化减少了中央转子的旋转阻力,否则这会降低中央轴旋转与F(1)部分ATP合成之间的耦合效率。此外,F(1)F(0)二聚化及其进一步的寡聚化也增加了酶对自然或实验诱导的不稳定条件的稳定性。

相似文献

[1]
Regulation of the F1F0-ATP synthase rotary nanomotor in its monomeric-bacterial and dimeric-mitochondrial forms.

J Biol Phys. 2008-4

[2]
Unidirectional regulation of the FF-ATP synthase nanomotor by the ζ pawl-ratchet inhibitor protein of Paracoccus denitrificans and related α-proteobacteria.

Biochim Biophys Acta Bioenerg. 2018-6-8

[3]
Large conformational changes of the epsilon subunit in the bacterial F1F0 ATP synthase provide a ratchet action to regulate this rotary motor enzyme.

Proc Natl Acad Sci U S A. 2001-6-5

[4]
Control of rotation of the FF-ATP synthase nanomotor by an inhibitory α-helix from unfolded ε or intrinsically disordered ζ and IF proteins.

J Bioenerg Biomembr. 2018-9-28

[5]
Formation of the yeast F1F0-ATP synthase dimeric complex does not require the ATPase inhibitor protein, Inh1.

J Biol Chem. 2002-10-18

[6]
Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.

Curr Protein Pept Sci. 2002-8

[7]
Current understanding of structure, function and biogenesis of yeast mitochondrial ATP synthase.

J Bioenerg Biomembr. 2019-8-16

[8]
Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase.

Nature. 2015-2-23

[9]
ATP synthase from Escherichia coli: Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols.

Biochim Biophys Acta. 2016-2

[10]
Structure of dimeric F1F0-ATP synthase.

J Biol Chem. 2010-9-10

引用本文的文献

[1]
F-ATPase Rotary Mechanism: Interpreting Results of Diverse Experimental Modes With an Elastic Coupling Theory.

Front Microbiol. 2022-4-22

[2]
A high-resolution route map reveals distinct stages of chondrocyte dedifferentiation for cartilage regeneration.

Bone Res. 2022-4-27

[3]
Control of rotation of the FF-ATP synthase nanomotor by an inhibitory α-helix from unfolded ε or intrinsically disordered ζ and IF proteins.

J Bioenerg Biomembr. 2018-9-28

[4]
The Inhibitory Mechanism of the ζ Subunit of the F1FO-ATPase Nanomotor of Paracoccus denitrificans and Related α-Proteobacteria.

J Biol Chem. 2016-1-8

[5]
Tapetum-specific expression of a cytoplasmic orf507 gene causes semi-male sterility in transgenic peppers.

Front Plant Sci. 2015-4-22

[6]
NMR structures of α-proteobacterial ATPase-regulating ζ-subunits.

J Mol Biol. 2014-7-15

[7]
Mitochondrial cytochrome c oxidase and F1Fo-ATPase dysfunction in peppers (Capsicum annuum L.) with cytoplasmic male sterility and its association with orf507 and Ψatp6-2 genes.

Int J Mol Sci. 2013-1-7

[8]
Biological physics in México: Review and new challenges.

J Biol Phys. 2011-3

[9]
Structure of dimeric F1F0-ATP synthase.

J Biol Chem. 2010-9-10

本文引用的文献

[1]
Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1.

Cell Metab. 2008-7

[2]
Supramolecular organization of protein complexes in the mitochondrial inner membrane.

Biochim Biophys Acta. 2009-1

[3]
Supramolecular organization of the yeast F1Fo-ATP synthase.

Biol Cell. 2008-10

[4]
Dimer ribbons of ATP synthase shape the inner mitochondrial membrane.

EMBO J. 2008-4-9

[5]
The product of uncI gene in F1Fo-ATP synthase operon plays a chaperone-like role to assist c-ring assembly.

Proc Natl Acad Sci U S A. 2007-12-26

[6]
Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase.

Results Probl Cell Differ. 2008

[7]
Role of the epsilon subunit of thermophilic F1-ATPase as a sensor for ATP.

J Biol Chem. 2007-12-28

[8]
How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria.

Proc Natl Acad Sci U S A. 2007-10-2

[9]
The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase.

Structure. 2007-8

[10]
Structures of the thermophilic F1-ATPase epsilon subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1.

Proc Natl Acad Sci U S A. 2007-7-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索