Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Circuito Escolar s/n. Laboratorio 203, Edificio "F"., Delegación Coyoacán, 04510, Mexico City, CP, Mexico.
Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
J Bioenerg Biomembr. 2018 Oct;50(5):403-424. doi: 10.1007/s10863-018-9773-9. Epub 2018 Sep 28.
The ATP synthase is a ubiquitous nanomotor that fuels life by the synthesis of the chemical energy of ATP. In order to synthesize ATP, this enzyme is capable of rotating its central rotor in a reversible manner. In the clockwise (CW) direction, it functions as ATP synthase, while in counter clockwise (CCW) sense it functions as an proton pumping ATPase. In bacteria and mitochondria, there are two known canonical natural inhibitor proteins, namely the ε and IF subunits. These proteins regulate the CCW FF-ATPase activity by blocking γ subunit rotation at the α/β/γ subunit interface in the F domain. Recently, we discovered a unique natural F-ATPase inhibitor in Paracoccus denitrificans and related α-proteobacteria denoted the ζ subunit. Here, we compare the functional and structural mechanisms of ε, IF, and ζ, and using the current data in the field, it is evident that all three regulatory proteins interact with the α/β/γ interface of the F-ATPase. In order to exert inhibition, IF and ζ contain an intrinsically disordered N-terminal protein region (IDPr) that folds into an α-helix when inserted in the α/β/γ interface. In this context, we revised here the mechanism and role of the ζ subunit as a unidirectional F-ATPase inhibitor blocking exclusively the CCW FF-ATPase rotation, without affecting the CW-FF-ATP synthase turnover. In summary, the ζ subunit has a mode of action similar to mitochondrial IF, but in α-proteobacteria. The structural and functional implications of these intrinsically disordered ζ and IF inhibitors are discussed to shed light on the control mechanisms of the ATP synthase nanomotor from an evolutionary perspective.
ATP 合酶是一种普遍存在的纳米马达,通过合成 ATP 的化学能量为生命供能。为了合成 ATP,这种酶能够以可逆的方式旋转其中心转子。在顺时针 (CW) 方向上,它作为 ATP 合酶起作用,而在逆时针 (CCW) 方向上,它作为质子泵 ATP 酶起作用。在细菌和线粒体中,有两种已知的典型天然抑制剂蛋白,即 ε 和 IF 亚基。这些蛋白通过在 F 结构域中的 α/β/γ 亚基界面处阻止 γ 亚基旋转来调节 CCW FF-ATP 酶活性。最近,我们在 Paracoccus denitrificans 和相关的 α-变形菌中发现了一种独特的天然 F-ATP 酶抑制剂,称为 ζ 亚基。在这里,我们比较了 ε、IF 和 ζ 的功能和结构机制,并且根据该领域的当前数据,显然所有三种调节蛋白都与 F-ATP 酶的 α/β/γ 界面相互作用。为了发挥抑制作用,IF 和 ζ 包含一个固有无序的 N 端蛋白区域 (IDPr),当插入到 α/β/γ 界面时,该区域折叠成一个 α-螺旋。在这种情况下,我们在这里修订了 ζ 亚基作为单向 F-ATP 酶抑制剂的作用机制和作用,该抑制剂专门阻止 CCW FF-ATP 酶的旋转,而不影响 CW-FF-ATP 合酶的周转率。总之,ζ 亚基的作用模式类似于线粒体 IF,但在 α-变形菌中。这些固有无序的 ζ 和 IF 抑制剂的结构和功能意义进行了讨论,从进化的角度阐明了 ATP 合酶纳米马达的控制机制。