Department of Orthopaedic Surgery, Second Hospital of Xi'an Jiaotong University, 159 Xiwulu, Xi'an, Shaanxi, People's Republic of China.
Spine (Phila Pa 1976). 2009 Aug 15;34(18):1893-9. doi: 10.1097/BRS.0b013e3181ae25dc.
An in vitro biomechanical study.
To determine the initial stability and function of a new artificial joint in a cadaveric cervical spine model by comparing it with a conventional method.
Resection of the odontoid and anterior arch of the atlas results in atlantoaxial instability, which if left uncorrected may lead to severe neurologic complications. Currently, such atlantoaxial instability is corrected by anterior and/or posterior C1-C2 fusion.
There were 24 fresh human cadaveric cervical spines (C0-C3) randomly divided into 2 groups: group 1, resection of the odontoid with artificial atlanto-odontoid joint (AAOJ); and group 2, resection of the odontoid with Harms anterior atlantoaxial plate (Harms). For each specimen, the intact and resection of the odontoid underwent a flexibility test first, followed by the instrumented construct. Rotational angles of the C0-C3 segment were measured to study the immediate stability and function of resection of the odontoid and AAOJ, compared with the intact and resection of the odontoid and Harms.
Compared with the intact state, resection of the odontoid and AAOJ resulted in a significant decrease in the range of motion (ROM) and neutral zone during flexion, extension, and lateral bending (P < 0.05); however, with regard to axial rotation, there was no significant difference in ROM (P > 0.05). Compared with resection of the odontoid and Harms, resection of the odontoid and AAOJ during flexion, extension, and lateral bending, there was no significant difference in ROM (P > 0.05).
We have designed a new type of AAOJ for correcting atlantoaxial instability arising from C1 to C2 anterior decompression procedures. The unique aspect of this joint is that it restores, to a great extent, the C1-C2 axial rotation that is lost during current stabilization procedures.
一项体外生物力学研究。
通过与传统方法比较,确定新型人工关节在尸体颈椎模型中的初始稳定性和功能。
齿状突和寰椎前弓切除会导致寰枢椎不稳,如果不加以纠正,可能会导致严重的神经并发症。目前,这种寰枢椎不稳通过寰枢椎前路和/或后路融合来矫正。
共有 24 具新鲜的人体颈椎(C0-C3)尸体标本随机分为 2 组:组 1,齿状突切除伴人工寰齿关节(AAOJ);组 2,齿状突切除伴 Harms 寰枢前弓板(Harms)。对于每个标本,先进行完整颈椎和齿状突切除的柔韧性测试,然后进行器械构建。测量 C0-C3 节段的旋转角度,以研究齿状突切除和 AAOJ 的即刻稳定性和功能,与完整颈椎和齿状突切除以及 Harms 进行比较。
与完整状态相比,齿状突切除伴 AAOJ 导致屈伸和侧屈时活动度(ROM)和中立区显著减小(P < 0.05);然而,在轴向旋转方面,ROM 无显著差异(P > 0.05)。与 Harms 相比,齿状突切除伴 AAOJ 在屈伸和侧屈时的 ROM 无显著差异(P > 0.05)。
我们设计了一种新型的 AAOJ,用于矫正因 C1 到 C2 前路减压术引起的寰枢椎不稳。这个关节的独特之处在于,它在很大程度上恢复了在当前稳定术中丢失的 C1-C2 轴向旋转。