Ensign Daniel L, Pande Vijay S
Department of Chemistry, Stanford University, Stanford, California 94305, USA.
J Phys Chem B. 2009 Sep 10;113(36):12410-23. doi: 10.1021/jp903107c.
In this work, we develop a fully Bayesian method for the calculation of probability distributions of single-exponential rates for any single-molecule process. These distributions can even be derived when no transitions from one state to another have been observed, since in that case the data can be used to estimate a lower bound on the rate. Using a Bayesian hypothesis test, one can easily test whether a transition occurs at the same rate or at different rates in two data sets. We illustrate these methods with molecular dynamics simulations of the folding of a beta-sheet protein. However, the theory presented here can be used on any data from simulation or experiment for which a two-state description is appropriate.
在这项工作中,我们开发了一种全贝叶斯方法,用于计算任何单分子过程的单指数速率的概率分布。即使在未观察到从一个状态到另一个状态的转变的情况下,也可以推导出这些分布,因为在这种情况下,数据可用于估计速率的下限。使用贝叶斯假设检验,可以轻松检验两个数据集中的转变是以相同速率还是不同速率发生。我们用β-折叠蛋白折叠的分子动力学模拟来说明这些方法。然而,这里提出的理论可用于任何来自模拟或实验的数据,只要这些数据适合用两态描述。